Fairness in Incomplete Information Bargaining: Theory and Widespread Evidence from the Field*

Daniel Keniston, Bradley J. Larsen, Shengwu Li, J.J. Prescott, Bernardo S. Silveira, and Chuan Yu^{\dagger}

September 10, 2022

Abstract

This paper documents a robust pattern from diverse sequential bargaining settings: agents favor offers that split the difference between the previous two offers. Our settings include price negotiations, insurance claims, trade tariffs, and even a TV game show. We argue that classical game theory cannot convincingly explain these findings. Instead, we propose a robust-inference argument under which the two last offers might bound potential surplus. Split-the-difference offers can then be viewed as a fair division. Consistent data patterns in each setting point to split-the-difference offers as a strong bargaining norm.

JEL Codes: C7, D8, D9
Keywords: Bargaining, negotiation, fairness, split-the-difference, incomplete information, robust inference, alternating offers

[^0]
1 Introduction

The role of fairness notions in bilateral bargaining has been widely accepted by practitioners and explored in depth in laboratory experiments. A number of studies document such influences, in particular demonstrating a bias toward an equal split of a known pie; see Camerer (2011) for a review. Little is known, however, about how these norms play out in the field, where assumptions of complete information common in laboratory experiments are unlikely to hold. In this paper, we document a largely understudied fact: agents in real-world sequential bargaining settings favor offers that split the difference between the two most recent offers on the table.

The term split the difference appears in previous research (especially experimental work) on bargaining with different meanings. Binmore et al. (1989), for example, use it to describe bargaining outcomes in which the players divide a known surplus net of their respective outside options. In the present paper, similar to Bochet et al. (2021) and Backus et al. (2020), splitting the difference refers instead to a notion in a sequential-offer game where the current bargaining offer lies at the midpoint between the two most recent offers (the most recent offer of the proposer and the most recent offer of the counterparty). As an example, suppose that in an alternating-offer game, at some point when it is the seller's turn, the seller proposes $\$ 100$, then the buyer proposes $\$ 50$, and then it is the seller's turn again. We refer to the $\$ 100$ and $\$ 50$ offers as the two most recent offers, and, if the seller next proposes $\$ 75$, we refer to this as a split-the-difference offer.

Our empirical evidence comes from novel, detailed data on sequential offers from several vastly different bargaining contexts: business-to-business negotiations for used cars in the U.S., pre-trial settlement bargaining on insurance injury claims in the U.S., street negotiations from a quirky TV game show in Spain, bargaining for auto rickshaw rides in India, international trade tariff bargaining, online retail negotiations from eBay.com, and bargaining over housing through a real estate dealer. In each setting, we find strong evidence of split-the-difference offers - a clear mode at the $50-50$ point between the two most recent offers. To our knowledge, the widespread nature of this phenomenon-across very different bargaining settings-was previously undocumented.

Having demonstrated that split-the-difference offers are ubiquitous, we ask what model could explain this behavior. The prevalence of equal splits of a commonly known surplus has
been widely established in lab experiments. Researchers often attribute these patterns to fairness-related norms. ${ }^{1}$ But it is far from obvious that the patterns that we document are associated with fairness, as the surplus in our setting depends on agents' private information. In principle, split-the-difference offers are "fair" only in the sense that they lie halfway between the possible range of likely subsequent offers given the current offer history; they do not necessarily constitute an equitable split of the actual surplus available to the agents. In fact, unless the offer made by each party corresponds to her opponent's actual value or cost, splitting the difference between offers cannot yield an equal split of the surplus. ${ }^{2}$

We reconcile split-the-difference offers and fairness notions in the context of a bargaining game with alternating offers and two-sided private information. In this context, we first show that a pattern of split-the-difference offers may arise in a perfect Bayesian equilibrium even when the players are completely selfish. However, this equilibrium is far from being unique. Thus, while split-the-difference offers are consistent with "standard" game theory, they are by no means predicted by it. We then propose a robust-inference approach that explains why agents may indeed view an equal split of the two most recent offers as "fair." Our argument relies on agents making inferences about the support of their opponent's valuation based on the fact that the opponent did not accept the agent's previous offer; we assume agents do not base inferences specifically on the level of an opponent's counteroffer. Consider a case where a seller initially proposes a price of $\$ 100$. The buyer rejects this offer and counters at $\$ 50$. What can the seller infer about the buyer's valuation from the fact that the buyer rejected $\$ 100$?

To answer this question, we rely on the concept of sequential best responses (see Battigalli and Siniscalchi 2002), which imposes only weak assumptions about rationality. We show that, for all buyer types (i.e., buyers with some valuations) below $\$ 100$, rejecting the $\$ 100$ offer is a sequential best response to every belief that the buyer may hold about the seller's type. And we show that, for all buyer types above $\$ 100$, accepting is a sequential best

[^1]response to some belief a buyer could hold. In this sense, $\$ 100$ is the highest buyer type that the seller cannot rule out (1) based on the buyer's rejection of $\$ 100$, and (2) under the assumption that the seller knows the buyer is behaving rationally according to some belief. A similar argument applies to the buyer's inference about the seller's valuation if the seller rejects the buyer's counteroffer of $\$ 50$. Together, these arguments offer an explanation for how a buyer and a seller might jointly view the gap between the two most recent offers- $[50,100]$-as the potential surplus, or the most optimistic inference agents' could make about their opponents' type based only on rational past-offer rejections. ${ }^{3}$ In this light, an offer that splits the difference between the two most recent offers-an offer of $\$ 75$ in this example - can be viewed as "fair," an equal split of the potential surplus.

Our theoretical analysis is agnostic about the nature of the agents' fairness concerns. It accommodates, for example, the possibility that agents have actual preferences that favor equitable bargaining outcomes, as well as the scenario in which agents simply desire to be perceived as fair by others (Andreoni and Bernheim 2009). It might also be the case that agents fear potential informal sanctions for making offers that are considered unfair. ${ }^{4}$ While our analysis cannot fully disentangle these channels, we provide several pieces of evidence that, together, suggest that split-the-difference offers are at least in part sustained by the threat of sanctions. In particular, we show that split-the-difference offers are more likely to be accepted by the opposing party - more likely even than offers that are slightly more favorable to the opposing party. ${ }^{5}$ Conversely, split-the-difference offers are less likely to result in the opponent exiting the negotiations entirely. If the bargaining continues, then split-the-difference offers tend to be reciprocated with subsequent split-the-difference offers within a given bargaining sequence.

In the same vein, we demonstrate that it is indeed the two most recent offers in a

[^2]bargaining sequence to which players gravitate: proposing an offer at a later stage of the game that splits the difference between offers other than the previous two is far less common. Similarly, split-the-difference offers are substantially more prevalent than offers based on anchor points that are privately known to the proposer, such as the secret auto-accept and auto-decline prices set by the seller in the eBay setting or the loss estimate set by the defendant in the insurance settlement setting. That is, agents systematically split the difference between the previous two offers, which are common knowledge, and thus engage in a behavior that is subject to the scrutiny of all agents involved. We also show that certain agents are more likely than others to make split-the-difference offers. Additionally, we show that a seller is less likely to propose a $50-50$ split if one of the two most recent offers is an extremely low buyer offer, and thus the $50-50$ norm is constrained by the disparity between the two previous offers.

We see our paper as demonstrating that there is a convention-not an ironclad convention, but a notable convention-that when making an offer in a real-world negotiation, agents are inclined to split the difference between the two most recent offers and, further, that offers abiding by this convention are more likely to be accepted, ending the game. We establish that this behavior is not unique to consumer interactions nor to U.S. negotiation culture. Similarly, this is not a feature of small-stakes negotiations only; it also appears in home sales, the largest lifetime purchase for many buyers. Moreover, our paper establishes a possible grounding for why such behavior could be viewed as "fair" in some sense, even though the two most recent offers are themselves endogenous equilibrium objects and thus the halfway point does not actually correspond to an equal split of the pie.

Our motivation for selecting these particular settings is simple: we use every dataset available to us in which all back-and-forth offers are recorded, because only with such data can we examine split-the-difference offers. This type of detailed bargaining data is relatively new. As such, split-the-difference offers have been naturally understudied thus far, and several of the datasets we study are new to the literature. The housing dataset is completely new. The used-car dataset is largely new; the study of Larsen (2021) uses some observations from this same setting, but here we take advantage of a larger dataset and more information on alternating offers not used previously. The data on pre-trial settlement negotiations is also largely new; Prescott et al. (2014) studies a small subset of this data to examine high-low contracts. Data on auto rickshaw rides comes from Keniston (2011), data on the

Spanish TV show comes from Hernandez-Arenaz and Iriberri (2018), and international tariff negotiation data comes from Bagwell et al. (2020). None of these previous studies examines split-the-difference behavior.

Two existing studies analyze a similar notion of splitting the difference. Backus et al. (2020) provide descriptive evidence of several facets of eBay bargaining, documenting the prevalence of split-the-difference offers being made and accepted on eBay. We incorporate their data as one of our seven settings, and we adopt their framework as a starting point for our analysis. ${ }^{6}$ Bochet et al. (2021) design a lab experiment in which agents with private information negotiate over multiple issues. The authors find that an alternating-offer regime arises endogenously, with offers frequently splitting the difference between the two most recent offers whether agents negotiate over single items or bundles. Other than these two studies, we are not aware of any discussion of this phenomenon in the literature. ${ }^{7}$ Recent work by Huang et al. (2020) also study incomplete-information bargaining in an experimental setting, but using a protocol of ultimatum offers. In Section 4.2 we describe how our results shed light on their findings, offering insight as to how, even in incomplete information settings, agents' behavior is consistent with a notion of fairness. Finally, our study contributes to a literature that studies behavioral phenomena in bargaining using real-world data, such as Pope et al. (2015), studying focal points, or Jiang (2022), studying left-digit bias.

The rest of the paper is organized as follows. Section 2 describes each of our data settings, and Section 3 contains our empirical results documenting the prevalence of split-the-difference offers. Section 4 presents our robust-inference argument, and Section 5 provides additional empirical results regarding split-the-difference offers. Section 6 concludes.

[^3]
2 Description of Field Settings

We now introduce the field settings from which we obtain our bargaining data. A benefit of the question we study in this paper-how the current offer in a sequential bargaining game relates to the two most recent offers - is that we can address the question in each of these field settings even though the products or outcomes over which agents negotiate differ drastically from setting to setting. In particular, in each setting, we observe data on many bargaining sequences (which we also refer to as threads) and, for each sequence, we observe the full set of sequential offers between negotiating parties. We consider an observation to be an offer triple: the current offer and two preceding offers.

We drop from every dataset any bargaining sequences in which there are fewer than three offers. We drop any threads that continue beyond the point where an agent makes an offer exactly equal to the opponent's previous offer (which logically should have ended the game in agreement). We also drop any sequences in which an offer lies outside the two most recent offers or cases in which a seller's offer lies below a buyer's offer. ${ }^{8}$ We describe additional cleaning steps in Appendix B.

2.1 Business-to-Business Used-Car Bargaining

The first dataset comes from the U.S. wholesale used-car industry. In this market, owners of used-car dealerships buy vehicles from other dealerships as well as from large companies, such as Hertz (rental cars), Wheels (a fleet company), Bank of America (selling off-lease or repossessed vehicles), or Ford (selling lease buy-back cars). All negotiating agents are professionals or businesses experienced in these negotiations. This $\$ 80$ billion industry underlies the supply side of the used-car market in the U.S., trading 15 million cars annually; similar platforms exist internationally. For each car, an auction house runs a secret-reserveprice ascending auction, followed by bilateral bargaining between the seller and the highest bidder if the auction price falls short of the reserve price. The data we use in our analysis is generated during this post-auction bargaining stage.

The dataset comes from six auction houses from January 2007 to March 2010. It records

[^4]each distinct attempt to sell the vehicle through the mechanism, and, for each attempt, every alternating offer proposed by either the buyer or the seller, as well as the outcome of the bargaining. This data overlaps in part with the data used in Larsen (2021), but it also contains additional bargaining sequences that were dropped in that analysis. This new inclusion highlights a major benefit of our empirical approach: the structural exercise of Larsen (2021) required careful data cleaning and controlling for heterogeneity in the items over which the parties negotiated, whereas our approach only requires looking at split-the-difference patterns between offers in a given bargaining sequence, regardless of heterogeneity across items.

Descriptive statistics for this dataset are shown in the first column of Table 1. This dataset consists of 21,734 total bargaining sequences and 33,356 observations (offer triples). Bargaining in this market begins if the auction price is below the reserve price, in which case the auction price becomes the first offer in an alternating-offer bargaining game. The seller can choose to accept the auction price, propose a counteroffer, or quit (ending the game). The bargaining process is typically wrapped up within a day, with an average of several hours between each offer. The average first offer (auction price) is $\$ 7,444$, followed by an average counteroffer from the seller of $\$ 8,918$. The average number of offers in a sequence in the used-car sample is 3.53 and the average last price offered is $\$ 8,072 .{ }^{9}$ The negotiation ends in agreement 59% of the time, at an average accepted price of $\$ 7,987$. The γ_{t} objects reported in Table 1 are defined and discussed in Section 3.

2.2 Pre-trial Settlement Bargaining from Insurance Claims

The second dataset comes from the pre-trial settlement bargaining over injury claims made under U.S. auto and general liability insurance policies. ${ }^{10}$ This dataset consists of extensive proprietary information about all claims made to a large national auto and general liability insurer that closed between January 1, 2004, and March 31, 2009. The data contains details about the underlying accident, the alleged injury, the involved parties, the insurance contract, and all attempts by the parties to resolve the associated dispute.

In these insurance cases, plaintiffs allege that injurers caused harm covered by the

[^5]Table 1: Descriptive Statistics of Bargaining Settings

	Cars	Settlement	TV Show	Rides	Housing	Trade	eBay
\# Threads	21,734	74,356	204	2,058	176	44,048	$6,976,776$
\# Offer Triples	33,356	208,463	714	2,986	176	46,985	$9,789,903$
Rounds	3.53	4.80	5.50	4.32	3.00	3.07	3.40
Pr(Agree)	0.59	0.94	0.91	0.39	0.73	0.08	0.29
First Offer	$\$ 7,444$	$\$ 36,391$	$€ 19.50$	$₹ 51.69$	$\$ 460,849$	0.00	$\$ 151.06$
Second Offer	$\$ 8,918$	$\$ 64,042$	$€ 124.27$	$₹ 36.73$	$\$ 430,071$	69.60	$\$ 88.71$
Final Offer	$\$ 8,072$	$\$ 24,728$	$€ 56.67$	$₹ 39.50$	$\$ 451,248$	38.30	$\$ 122.70$
Accept Price	$\$ 7,897$	$\$ 21,838$	$€ 55.37$	$₹ 42.54$	$\$ 469,658$	24.29	$\$ 91.40$
γ_{3}	0.39	0.29	0.32	0.28	0.71	0.44	0.42
γ_{4}	0.18	0.43	0.31	0.24		0.26	0.38
γ_{5}	0.38	0.29	0.25	0.18		0.33	0.23
γ_{6}	0.14	0.39	0.28	0.16			0.31
γ_{7}	0.33	0.30	0.19	0.17			0.19
γ_{8}	0.12	0.38	0.34	0.27			
γ_{9}	0.45	0.32	0.09				
γ_{10}	0.00	0.38	0.38				

Notes: Table shows the number of sequences/threads and number of offer triples in each data setting, as well as averages for several variables in the data. For $t \geq 3$, the variable γ_{t} denotes the average concession weight in bargaining round t, as defined in Section 3. The units for the average first, second, final, and accept prices are euros for the TV Show and Indian rupees for the Rides setting. The trade setting combines offer sequences in which the units are percentages and sequences where the units are a currency. Units are unimportant for our analysis, which relies on the unit-less γ_{t} weights.
insurer's policies. If a plaintiff asserts damages within policy limits or declines to pursue the insured individually for any excess-or if the insurer agrees to cover any damages in excess of the insurance contract's policy limit, which effectively it must do to act in "good faith" if it turns down an offer by the plaintiff for the policy limit or less-the insurer effectively replaces the injurer as the defendant in any dispute, which occurs in virtually all cases. Under these circumstances, the plaintiff and the insurer bargain over the amount that should be paid by the insurer to the plaintiff. This process can take many months to reach a conclusion. If they cannot reach an agreement, the two parties will usually pursue litigation, with the injurer filing a complaint. The parties may also negotiate and settle the claim during the litigation stage. Importantly, the insurer records the amount of each back-and-forth proposal made by either the insurer or the plaintiff and whether the parties reach an agreement in these negotiations.

After cleaning, our sample contains 74,356 bargaining threads and 208,463 offer triples. Table 1 shows that the average first offer is $\$ 36,391$, followed by a counteroffer of $\$ 64,042$ from the opposing party, and an average final offer of $\$ 24,728$. The negotiations include 4.8
offers on average and end in agreement 94% of the time, at an average accepted price of $\$ 21,838$. This number is not between the average first and second offers because of a feature of negotiations in this setting: the first offer may come from the plaintiff or the insurer, and, in computing the average first and second offers, Table 1 pools over these two cases. ${ }^{11}$ Appendix B discusses this point in more detail and describes how we clean the data to form alternating-offer sequences.

2.3 Street Bargaining from a TV Game Show in Spain

The third dataset comes from a TV game show in Spain titled Negocia Como Puedas (roughly, "Bargain However You Can") analyzed in Hernandez-Arenaz and Iriberri (2018). ${ }^{12}$ This data was generated in the streets of several major Spanish cities in summer 2013. In a typical episode of the show, the host approaches individuals in the street and invites them to participate in the game. Upon acceptance, an individual (the proposer) is endowed with a potential pie of 100 euros and is asked an easy question. The proposer is not allowed to answer the question herself. Instead, she must, within a three-minute limit, (i) find a passer-by (the responder) able to provide an answer to the question that the proposer finds satisfactory, and (ii) negotiate a price that the proposer will pay the responder to be able to use that answer.

If the negotiations succeed and the responder's answer to the original question is correct (as determined by the host), the proposer pays the responder the agreed amount. The proposer then moves on to a new question, referred to as a new stage of the game, where the process is repeated. In the new stage, the size of the pie increases (by 200 euros in the second stage, 300 in the third, and 1,000 in the fourth). In any stage of the game, if the proposer does not reach an agreement within the three-minute time limit, the game ends, and the proposer gets nothing. Throughout the game, the size of the pie is only known to the proposer, not the responder. In any given stage of the game, the bargaining is unstructured, but the negotiations typically follow an alternating-offer structure, with the proposer making the first offer. We only keep those threads in which offers clearly alternate between parties. Additional details on the cleaning of the data are found in Appendix B.

[^6]In the data, we have 204 sequences and 714 offer triples. Table 1 shows that the average first offer is 19.5 euros, followed by an average second offer of 124.3 euros and an average final offer of 56.7 euros. The game ends in agreement most of the time (91%), after an average of 5.5 rounds and at an average accepted price of 55.4 euros.

2.4 Auto Rickshaw Rides Bargaining in India

The fourth dataset comes from the local transportation market by auto rickshaw in Jaipur, India. An auto rickshaw is a form of three-wheeled mini-taxi, officially capable of carrying three passengers in a semi-enclosed back seat. Auto rickshaws are the primary means of rented transportation in Jaipur. During the period in which Keniston (2011) collected the data (January 2008 to January 2009), all prices were set by negotiation.

The data was collected by surveyors (whom we also refer to as buyers) who followed one of two possible protocols. In real bargaining, buyers were assigned to travel by auto rickshaw along fixed routes through the city, bargaining for the price of each ride. At the beginning of each route, buyers were paid a lump sum slightly higher than the expected cost of the route and were allowed to keep any money not spent on auto rickshaw fares. At the end of their assigned trip, they were free to return to their homes or alternate employment. Thus, their financial incentives and cost of time were similar to real trips taken for personal purposes. In scripted bargaining, buyers negotiated with sellers according to a written bargaining script (prepared by Keniston) consisting of a sequence of pre-determined counteroffers. Scripted surveyors were instructed to act as if they were bargaining in a realistic manner so that drivers (whom we also refer to as sellers) would respond as naturally as possible. After the conclusion of the bargaining, surveyors wrote down the series of offers made by the drivers and themselves. Drivers were not aware that they were part of a field experiment. The average negotiation took 55 seconds to complete.

In our analysis, we exclude any offers or responses that come from scripted surveyors, as they do not represent actual reactions. Additional details on data cleaning are in Appendix B. Our main sample consists of 2,058 bargaining threads and 2,986 offer triples. Table 1 demonstrates that the average first offer is 52 rupees, followed by an average counteroffer of 37 rupees and a final offer of 40 rupees. Negotiation concludes after an average of 4.32 offers, ending in agreement 39% of the time at an average accepted price of 43 rupees.

2.5 Bargaining in Residential Real Estate

The fifth dataset we use is new to the literature and comes from a growing residential real estate brokerage company that offers discounted agency fees of $2-3 \%$ rather than the traditional 6%. We collected this dataset in collaboration with the company, covering a number of houses on the market from 2015 to 2019 in Colorado. This dataset differs from the others we analyze in that we only observe offers placed by potential buyers, not by the seller. The company informs us that seller counteroffers are indeed quite rare in this market. Rather, the typical negotiation proceeds with a seller list price (which we treat as the first offer) followed by sequential offers from the buyer. For a given home, we observe the seller's list price and each offer placed by potential buyers. The time on the market for a given home can be several weeks or several months. In this setting, we consider split-the-difference behavior to be cases in which a buyer makes an offer and then, if that offer is rejected, subsequently makes an offer that splits the difference between the list price and the buyer's initial offer.

Table 1 shows that our sample has 176 threads and the same number of offer triples. This feature is by construction: our main object introduced in Section 3 cannot be defined in cases where one party makes three consecutive offers; thus, we only keep the seller's list price and the first two offers from the buyer, i.e., one offer triple for each bargaining sequence. These bargaining sequences end in agreement 73% of the time. Bargaining begins with an average list price of $\$ 460,849$, followed by an average second offer of $\$ 430,071$, and a final offer of $\$ 450,248$. When parties agree, they end at an average price of $\$ 469,658$. Additional details on data cleaning are found in Appendix B.

2.6 International Trade Tariff Bargaining

The sixth dataset contains detailed information on international trade negotiations recently declassified by the World Trade Organization (WTO). In these negotiations, countries bargain over commitments on their respective import tariffs. Despite the multilateral nature of both the WTO and its predecessor, the General Agreement on Tariffs and Trade (GATT), the negotiations are mostly bilateral, with individual country pairs making requests and offers over the tariff for a specific tariff-line (a product code).

We use the dataset of Bagwell et al. (2020), which comprises the Torquay Round (1950-
1951). This data includes 298 bilateral bargaining pairs from 37 countries, negotiating tariffs over thousands of tariff-line products. A bargaining thread is defined as two countries (proposer and target) negotiating a tariff over a tariff-line product. In each thread, we observe all requests from the proposer and offers from the target. As documented in Bagwell et al. (2020), relatively few back-and-forth offers and counteroffers take place in any given thread. For our analysis below, we consider whether a proposer requests a tariff that splits the difference between a zero tariff and the existing tariff (the status quo before the negotiations). To map the possibilities of a zero tariff and existing tariff into the same framework as the other data settings, Table 1 considers a zero tariff as the de facto initial request from the proposer (and, indeed, a zero tariff is frequently an actual request made in this setting). Similarly, Table 1 considers the existing tariff as the initial offer from the target (the row of "second offer"). We discuss this point further in Section 5.6. All subsequent requests and offers are also recorded in the data.

Table 1 shows that the sample consists of 44,048 bargaining sequences and 46,985 offer triple observations. The game proceeds for 3.07 offers on average, ending in agreement 8% of the time. Note that here we combine sequences in which the units are percentages and sequences in which the units are a currency; thus, we provide no units on these averages of offers in Table 1 and their values are hard to interpret. However, units are unimportant for our analysis, which relies on the unit-less γ_{t} weights (described in Section 3). Additional details on data cleaning are found in Appendix B.

2.7 Bargaining on eBay's Best Offer Platform

Our final field setting comes from eBay's Best Offer negotiation platform. eBay is well known as a platform for buying and selling via auctions or fixed prices. Less well known is the bargaining mechanism on eBay, through which a buyer and seller negotiate via alternating offers (limited to three offers by each party). The game begins with the seller posting a list price. An interested buyer can pay this price or make an offer. Offers are sent through the eBay platform, and the receiving party has 48 hours to respond by either accepting, declining, or proposing a counteroffer. Our data comes from internal data collected by Larsen and coauthors for a separate project (Backus et al. 2020), and it consists of all bargaining sequences placed by buyers and sellers on eBay (regardless of the product) from June 2012 through May 2013.

The sample consists of $6,976,776$ bargaining sequences, comprising $9,789,903$ offer triple observations. These sequences contain an average of 3.4 offers. The average list price is $\$ 151$, the average second offer is $\$ 89$, and the average final offer is $\$ 123$. When trade occurs (which happens 29% of the time), the final agreed-upon price is $\$ 91$.

3 Split-the-Difference Offers are Widespread

We now demonstrate a key empirical pattern: agents favor offers that split the difference between the two most recent offers. To show this, we first introduce some useful notations. For each data setting, we organize each sequential bargaining thread in the following way, as in Backus et al. (2020). For each round $t=1,2, \ldots$ in the bargaining thread j, we observe the proposed amount, $p_{j, t}$. This proposed amount is an offer made by the seller/buyer, insurer/plaintiff, proposer/respondent, driver/surveyor, proposer/target, etc. If $p_{j, t}$ comes from one player, $p_{j, t+1}$ must come from the opponent-with the exception of threads in the housing dataset, as we note above and explain further later in this section.

We can write the proposed amount in round $t \geq 3$ as a weighted average of the proposed amount in the previous two rounds: $p_{j, t}=\gamma_{j, t} p_{j, t-1}+\left(1-\gamma_{j, t}\right) p_{j, t-2}$. Therefore, $\gamma_{j, t}$ represents, for bargaining thread j, the weight that the player in round t places on the opponent's previous offer, and $1-\gamma_{j, t}$ represents the weight the player places on her own previous offer. We can think of $\gamma_{j, t}$ as how much a player concedes to her opponent when she is making a counteroffer, or her concession weight. Rearranging to solve for $\gamma_{j, t}$ yields

$$
\begin{equation*}
\gamma_{j, t}=\frac{p_{j, t}-p_{j, t-2}}{p_{j, t-1}-p_{j, t-2}} . \tag{1}
\end{equation*}
$$

In particular, a split-the-difference offer corresponds to $\gamma_{j, t}=0.5$.
As highlighted in Section 2.5, in the housing dataset, we observe a seller's list price and a given buyer's offers, and in no bargaining thread does the number of offers from the same buyer exceed two. In this setting, we only define the concession rate for the second buyer's offer. Specifically, we let

$$
\begin{equation*}
\gamma_{j, 3}=\frac{p_{j, 3}-p_{j, 2}}{p_{j, 1}-p_{j, 2}} \tag{2}
\end{equation*}
$$

where $p_{j, 1}$ is the list price, $p_{j, 2}$ is the buyer's first offer, and $p_{j, 3}$ is the buyer's second offer. Thus, in the housing dataset, $\gamma_{j, 3}$ represents the weight a buyer places on the list price, and
$1-\gamma_{j, 3}$ represents the weight she places on her own initial offer.
The advantage of focusing on concession weights is that they are unit-less and do not require considering any heterogeneity across negotiation threads. Table 1 shows the average $\gamma_{j, t}$ for each round of the game, beginning with $t=3$. We observe as many as ten $\gamma_{j, t}$'s in some settings, ${ }^{13}$ and, as highlighted above, only the round $-3 \gamma_{j, t}$ in the housing setting. The average $\gamma_{j, t}$ in each round is below 0.5 (other than for housing, where it is 0.71), suggesting that most agents make offers closer to their own previous offers than to their opponent's. In the settlement data, the average $\gamma_{j, t}$ is roughly $0.3-0.4$ in every round of the game, whereas in the cars setting, $\gamma_{j, t}$ tends to be much smaller in even rounds, which correspond to the seller's turns, suggesting that sellers generally concede less than buyers in this context.

The main pattern we wish to examine is whether agents in each of these settings exhibit a tendency to make offers that lie halfway between the two most recent offers on the table (i.e., $\gamma_{j, t}$ close to 0.5). Figure 1 plots a histogram of these concession weights, with each panel corresponding to one data setting. We pool together $\gamma_{j, t}$ for all $t \geq 3$; our results are similar if we analyze $\gamma_{j, t}$ from each round t separately. ${ }^{14}$ Despite the drastic differences in the environments, products, outcomes, or agents, an interesting pattern stands out in all datasets: there is a mass point at 0.5 - counteroffers that are halfway between the previous two offers, or split-the-difference offers. ${ }^{15}$

To our knowledge, the widespread nature of this split-the-difference pattern in negotiations in the field has not previously been documented. Unlike laboratory experiments, where prior research shows that players split a commonly known pie, in our settings, no player knows the true willingness to pay or willingness to sell of her opponent. An important challenge is then to explain why, in real-world negotiations with private information, players propose offers that split the difference between endogenous offers.

[^7]Figure 1: Distribution of Concession Weights $\gamma_{j, t}$

Panel B: Pre-trial Settlement Bargaining

Panel C: Street Bargaining in a TV Show

Panel D: Auto Rickshaw Rides Bargaining

Panel E: Bargaining Over Housing

Panel F: Trade Tariff Bargaining

Panel G: eBay Best Offer Bargaining

Notes: Each panel shows a histogram of $\gamma_{j, t}$ in a given data setting, as defined in Section 3.

4 What Model Could Generate This Behavior?

We now turn to the question of what theoretical model of bargaining might generate this type of behavior. In doing so, we take two approaches. First, we consider whether such behavior can arise in a standard game-theoretic framework-perfect Bayesian equilibrium (PBE). The answer does not follow from prior work, because there is no known characterization of the PBE offer sequences under two-sided incomplete information. We prove that there indeed exists a PBE with split-the-difference behavior, but there are many other equilibria without it. Hence, while PBE is not falsified by splitting the difference, it neither explains nor predicts the behavior, nor does it address why splitting the difference could be viewed as fair by agents with private information.

In response to these shortcomings of a PBE approach, we propose an alternative, robust argument that, without imposing a complete equilibrium model, addresses what we see as the most important question: why might agents view an equal division of the difference between the last two offers as a fair outcome, even though in reality it does not correspond to realized surplus?

We consider an alternating-offer game with two-sided incomplete information: neither the buyer nor the seller knows the other party's valuation for the good. The buyer has a value b and the seller a value s, each of which are in $[0,1]$, drawn independently according to CDFs $F_{b}:[0,1] \rightarrow[0,1]$ and $F_{s}:[0,1] \rightarrow[0,1]$. Time is discrete, and the discount factor for both players is $\delta \in(0,1)$. Upon receiving an offer at time t, the receiver either accepts, quits, or proposes a counteroffer for time $t+1$. If an offer of price p is accepted at time t, the buyer's present discounted utility is $\delta^{t-1}(b-p)$ and the seller's is $\delta^{t-1}(p-s)$. Without loss of generality, we focus on a game in which the seller is the first proposer.

4.1 A PBE with Split-the-Difference Behavior

We construct a PBE of the bargaining game that has split-the-difference behavior at every history on the path of play. For ease of construction, we assume that both values are uniformly distributed.

Proposition 1. Suppose $F_{s}(v)=F_{b}(v)=v, v \in[0,1]$. There exists $\underline{\delta}<1$ such that if $\delta>\underline{\delta}$, then there is a PBE of the alternating-offer bargaining game such that, for every realization of s and b, the resulting sequence of offers satisfies $p_{t}=0.5 p_{t-2}+0.5 p_{t-1}$ for all $t \geq 3$.

The proof of this proposition, and all other proofs, are found in Appendix A. The proof is quite involved, requiring that we separately handle possible deviations at the first offer and those at later offers, and that we construct an appropriate punishment scheme to prevent such deviations for buyers or sellers.

Proposition 1 demonstrates that split-the-difference behavior is at least consistent with a PBE. However, the equilibrium we construct is somewhat post hoc: the behavior is built in, with no explanation of why agents might gravitate toward this behavior. ${ }^{16}$ Furthermore, splitting the difference is by no means the unique PBE prediction. For bargaining under incomplete information, it is widely acknowledged that even sequential equilibrium has only weak implications for on-path behavior. Gul and Sonnenschein (1988) write that, with one-sided incomplete information, "almost any pair of strategies that is sequentially rational along the equilibrium path can be supported as a sequential equilibrium." The equilibrium we have constructed is instead for the case of two-sided incomplete information, but the same point applies: the construction can be easily modified to support on-path offers that are unequal splits between the most recent two.

4.2 A Robust Inference Argument: How Could Agents Possibly View Splitting the Two Most Recent Offers as "Fair"?

It seems plausible that, rather than some equilibrium notion, split-the-difference offers are supported by fairness norms, but such an explanation is less straightforward than it appears. Evidence from laboratory experiments indicating that subjects often favor equal divisions of a known pie has helped motivate the development of theoretical models involving social preferences, which account for agents' concerns for issues such as equity, social welfare, reciprocity, or social image (Bolton, 1991; Bolton and Ockenfels, 2000; Andreoni and Miller, 2002; Andreoni and Bernheim, 2009). However, standard behavioral economic theories that incorporate fairness concerns do not apply directly to our setting, because they are defined under complete information (Rabin, 1993; Fehr and Schmidt, 1999; Andreoni and Bernheim,

[^8]2009). When bargaining under incomplete information, the buyer's last offer need not be equal to the seller's value, and vice versa, so splitting the last two offers does not in general split the surplus; thus, the behavior also does not correspond to any previous notion of fairness. Moreover, in the equilibrium constructed for Proposition 1, splitting the last two offers does not even split the expected surplus equally, even though both buyer and seller values are independently and identically distributed.

To illustrate the challenge of attempting to attribute split-the-difference offers to fairness, consider one natural line of inference agents might invoke in a negotiation that begins with a seller asking for $\$ 100$ and a buyer countering at $\$ 50$. Assuming that no player makes an offer that would be unprofitable if accepted, the buyer may infer that the seller values the item weakly less than $\$ 100$, and the seller may infer that the buyer values the item weakly more than $\$ 50$. These arguments alone offer no useful motivation for a how a split-the-difference offer (\$75) could be viewed as equitable - the arguments suggest only that the size of the pie is at least -50 . The arguments are not wrong; they are just not useful for connecting $\$ 75$ to some notion of fairness. It could be that the seller's value is $\$ 0$ and the buyer's value is $\$ 500$, in which case $\$ 75$ is far from the midpoint of the surplus.

How, then, could agents view splitting the two most recent offers as fair? What is missed in the above line of reasoning is the information contained in the fact that neither the $\$ 100$ nor the $\$ 50$ offer were accepted-a fact that is publicly available information to both agents (unlike their values). We demonstrate how the last offer that the buyer rejects can be viewed as an upper bound for the buyer's value, a bound that is robust in a sense that will be formalized below. In the context of the example above, rationality alone implies that any buyer with value less than $\$ 100$ should not accept the seller's offer. If the buyer's value is strictly above $\$ 100$, then rationality alone does not imply the buyer will reject. That is, there exist buyer beliefs about the seller's strategy that would rationalize accepting an offer of $\$ 100$. Hence, if the seller believes that the buyer is rational, she cannot rule out that she is facing a buyer with a value below $\$ 100$. But, depending on which rational strategy the seller believes the buyer is playing, she might be able to rule out values above $\$ 100$. Therefore, $\$ 100$ is the highest buyer value that the seller robustly cannot rule out on the basis of the buyer's past rejection behavior.

The preceding argument applies symmetrically to the inferences that the buyer can make when the seller rejects an offer. Hence, the last offer that the buyer rejects is a robust upper
bound for his value, and the last offer that the seller rejects is a robust lower bound for her value. By themselves, the $\$ 100$ and $\$ 50$ prices carry little information about the size of the pie, but once coupled with the fact that they were rejected, an equal split can be explained as a fairness norm applied to these bounds on the potential surplus.

To formalize this argument, we introduce a few definitions. A narrow strategy σ_{i} for player $i \in\{s, b\}$ is a function from public histories to i 's available actions. ${ }^{17}$ A belief system for player i is a conditional probability system defined on $H \times \Sigma_{-i} \times \Theta_{-i}$, where H is the set of public histories, Σ_{-i} the set of opponent narrow strategies, and Θ_{-i} the set of opponent types. A pair $\left(\sigma_{i}, \theta_{i}\right)$ is rational if there exists a belief system μ such that σ_{i} is a sequential best reply to μ for type $\theta_{i} .{ }^{18}$ An offer sequence $\left\{p_{t}\right\}_{t=1}^{T}$ is monotone if the buyer's offers are strictly increasing, the seller's offers are strictly decreasing, and the highest buyer offer is no more than the lowest seller offer. ${ }^{19}$

Proposition 2. Let h be a history with a monotone offer sequence $\left\{p_{t}^{*}\right\}_{t=1}^{T}$, with the seller making the latest offer $p_{T} \in(0,1)$.

1. For all buyer values $b<p_{T}^{*}$, for any buyer strategy $\sigma_{B} \in \Sigma_{B}(h)$ such that $\left(\sigma_{B}, b\right)$ is rational, σ_{B} rejects p_{T}^{*} at h.
2. There exists $\underline{\delta}<1$ such that for all discount factors $\delta \geq \underline{\delta}$, for all buyer values $b>p_{T}^{*}$, there exists $\sigma_{B} \in \Sigma_{B}(h)$ such that $\left(\sigma_{B}, b\right)$ is rational and σ_{B} accepts p_{T}^{*} at $h .{ }^{20}$

And symmetrically for histories at which the buyer makes the latest offer.
Proposition 2 provides an explanation for why largely rational agents could gravitate toward offers that are halfway between the two most recent offers. We take as given, from the vast evidence in the literature, that people value fairness, and in Proposition 2, we describe how split-the-difference offers could be viewed as fair. The dimension along which

[^9]our argument weakens standard game-theoretic concepts is that we consider agents making inferences about an opponent's value based only on the history of offers that the opponent has rejected, not proposed. We believe this injects an element of realism into the theory: inference based on an opponent's binary decision to accept or reject a given offer is much less computationally intensive than the process of conditioning on the full history of the game and attempting to invert an opponent's continuously valued offer. ${ }^{21}$

Proposition 2 shows that, under this offer-rejection inference, a seller cannot rule out the possibility that the buyer's value is equal to (or less than) the most recent offer the buyer rejected, as any rational buyer would not have accepted an offer below his value. And for buyers with higher valuations, there exist rational strategies under which these buyers would have accepted the most recent offer of the seller. Therefore, the largest buyer type that the seller could not possibly rule out is a buyer with a value equal to the most recent offer rejected by the buyer, and analogously for the buyer's inference about the seller rejecting the most recent offer. Thus, an agreement to split this difference equally can be thought of as a fair division of the potential surplus.

By this reasoning, a hypothetical buyer who has just rejected an offer of $\$ 100$ might make the following statement: "I just told you (the seller) that I won't pay $\$ 100$ for the item. You and I both know that, after such an action, I would never admit to really valuing it at more than $\$ 100$ (even if that were true), because I could always argue that if I valued it at more than $\$ 100$ I would have accepted. But we also know that I would certainly have rejected your offer if my value was $\$ 100$ or less." Under this argument, both agents know that $\$ 100$ is the most optimistic belief the seller could have about the buyer's value that the buyer could not dispute by appealing to rational rejection behavior. Because each player could make such a statement about the other's valuation, a split-the-difference offer could emerge as a "fair" resolution of these claims.

This robust-inference argument is consistent with recent experimental data from Huang et al. (2020), who study lab subjects in ultimatum games under incomplete information. These games have starkly different strategic incentives compared to alternating-offer bargaining, and therefore not all of the treatment arms in Huang et al. (2020) are easily comparable

[^10]to our settings. In one treatment, however, the proposer (buyer) is unaware of the receiver's (seller's) cost, but the receiver knows both the buyer's value and receiver's cost. In their data, the modal proposer offer is exactly halfway between the proposer's value and the most optimistic belief that the proposer could hold about the receiver's cost (Huang et al., 2020, Figures B4.c and B4.d). Our study of field data offers a similar insight: agents in incomplete-information bargaining gravitate toward a notion of "fairness" that does not correspond to an equal split of the surplus but rather a split of the potential surplus under agents' most optimistic robust beliefs.

An alternative, more ambitious, approach would be to define a new kind of equilibrium that incorporates fairness concerns under incomplete information, and then prove that all the strategy profiles that it selects exhibit split-the-difference behavior. We have not pursued this approach, partly in the interest of brevity, and partly because our field settings are varied enough that it seems implausible to assume that all strategic behavior arises from such an equilibrium. Instead, we have sought with Proposition 2 only to explain one key conundrum: why a 50-50 split of the two most recent offers could be seen as equitable, and why anything else might therefore be seen as generous or greedy. ${ }^{22}$

5 Split-the-Difference Offers as a Fairness-Based Norm

Our robust inference theory in Section 4 does not take a stance on why bargainers care about fairness. It is possible that, in proposing split-the-difference offers, individuals are driven by a personal preference for fair negotiation outcomes. It is also possible that social image concerns-the desire to be perceived as fair-explain split-the-difference behavior. Another possibility is that individuals fear informal sanctions for making offers that are considered greedy or unfair in any sense. These potential channels are not mutually exclusive, and our analysis cannot completely tell them apart. Our analysis can, however, examine a number of different dimensions of split-the-difference behavior that shed light on these channels.

We start by presenting evidence that split-the-difference offers are consistent with the idea of being supported by social sanctions. Agents who make split-the-difference offers are systematically rewarded by the opposing party through higher probabilities of acceptance

[^11]and also by more frequent subsequent split-the-difference offers within the same bargaining sequence. Buyers who do not comply with the norm are sanctioned by a higher probability of their opponent exiting the negotiations, imposing financial or time costs. We also show that offers based on variables that are privately known by the proposer, which we observe in some of our settings, are much less prevalent than split-the-difference offers. That is, agents gravitate to a behavior that is easily verifiable by both parties, consistent with the idea that split-the-difference offers are subject to enforcement by the opponent. Additionally, we show several other patterns that offer further insights into split-the-difference offers.

5.1 Split-the-Difference Offers Are More Likely to be Accepted, Less Likely to Cause Exit

In this section, we explore how agents respond when they receive split-the-difference offers compared to when they do not. We show that split offers are discontinuously more likely to be accepted than non-split offers, suggesting that splitting the difference is not merely a heuristic used by the offering party, but rather that it is viewed as preferable (arguably fair) behavior by both the offerer and the receiver. Consistent with this interpretation, after agents make split offers, their opponents are less likely to abandon negotiations. This suggests that the choice to exit a bargaining interaction is motivated not just by the lack of expected surplus, but also by the perception that the opponent is not being "fair."

Specifically, we examine how a player's choice of offer, as measured by the concession weight, $\gamma_{j, t}$, relates to the probability that the offer is accepted or leads to a breakdown of negotiations. We create a measure for whether the offer is a "split" offer by creating an indicator $S p l i t_{j, t}$ that is equal to one if $\gamma_{j, t}$ is equal to 0.5 (after being rounded to the nearest hundredth, or $\left.\gamma_{j, t} \in[0.495,0.505]\right)$ for each $t \geq 3$. We then estimate the following linear probability regressions:

$$
\begin{align*}
\text { Accept }_{j, t} & =\beta \text { Split }_{j, t}+f\left(\gamma_{j, t}\right)+\tau_{t}+\epsilon_{j, t} \tag{3}\\
\text { Exit }_{j, t} & =\beta \text { Split }_{j, t}+f\left(\gamma_{j, t}\right)+\tau_{t}+\epsilon_{j, t}, \tag{4}
\end{align*}
$$

where Accept $_{j, t}$ is an indicator for whether the offer is accepted, Exit $_{j, t}$ is an indicator that the opponent exits before period $t+1, \tau_{t}$ is a round fixed effect, and $f\left(\gamma_{j, t}\right)$ is a flexible
function of $\gamma_{j, t}$. We specify $f\left(\gamma_{j, t}\right)$ as a third-order polynomial of $\gamma_{j, t}{ }^{23}$ The results are reported in Table 2, where each column corresponds to one dataset. We also report the frequency of acceptance, exit, and split offers. The acceptance rate varies across settings from 7% to 73%, the exit rates are between 3% and 86%, and the fraction of split offers ranges from 4% to 19%.

Table 2: Acceptance and Exit Following Split Offers

	(1) Cars	(2) Settlement	(3) TV Show	$\overline{(4)}$ Rides	(5) Housing	$\overline{(6)}$ Trade	$\begin{gathered} \hline \hline(7) \\ \text { eBay } \end{gathered}$
Split	$\begin{gathered} 0.120^{* * *} \\ (0.00830) \\ \hline \end{gathered}$	P $0.219^{* * *}$ (0.00555)	ael A: Ac $0.151^{* *}$ (0.0615)	Reptance 0.0569 (0.0354)	$\begin{gathered} 0.158 \\ (0.119) \end{gathered}$	$\begin{aligned} & 0.0676^{* * *} \\ & (0.00341) \\ & \hline \end{aligned}$	$\begin{gathered} 0.0849^{* * *} \\ (0.000484) \end{gathered}$
Split	$\begin{gathered} -0.0402^{* * *} \\ (0.00577) \\ \hline \end{gathered}$	Pan	l B: Opp -0.00977 (0.0122)	$\begin{gathered} \text { nent Exit } \\ -0.103^{* * *} \\ (0.0392) \\ \hline \end{gathered}$		$\begin{gathered} -0.0511^{* * *} \\ (0.00453) \\ \hline \end{gathered}$	$\begin{gathered} -0.0198^{* * *} \\ (0.000504) \\ \hline \end{gathered}$
N	33356	208463	714	3010	176	46985	9789903
Order of $\gamma_{j, t}$	3	3	3	3	3	3	3
Round FE	Yes						
Accept rate	0.38	0.34	0.26	0.20	0.73	0.07	0.20
Exit rate	0.27		0.03	0.41		0.86	0.51
Split rate	0.18	0.04	0.14	0.19	0.08	0.17	0.12
R^{2}	0.146	0.462	0.0295	0.160	0.0336	0.110	0.113

Notes: Table shows the estimated coefficient on the split indicator from the regressions described by equations (3) and (4). Each column corresponds to a separate data setting. The accept and exit rates are the means of the dependent variables, and the split rate is the mean of the split indicator. Standard errors are shown in parentheses. The number of observations for the rides setting differs from that in Table 1 because some scripted bargaining acceptance must be dropped and some scripted bargaining offers can be included here. The number of observations for the settlement setting differs from that in Table 1 because some sequences end at round 10 , and we have no data on whether round 10 offers were accepted. See Appendix B for details. $*: p<0.10, * *: p<0.05$, and ${ }^{* * *}: p<0.01$

In Panel A, we see a positive coefficient before the "split" offer indicator in all of our datasets, and this is statistically significant in all columns except the cases of auto rickshaw rides and housing (columns 4 and 5). This means that an offer in bargaining is more likely to be accepted if it is a split offer than if it is not. This effect is surprisingly large in magnitude, varying from 5.7% to 21.9%. Conversely, in Panel B, "split" offers are negatively associated with the opponent exiting the bargaining interaction. While sizes of the effect on exit are usually smaller than those on acceptance, they are significant in all cases except for the TV show, where exit is rare. The structure of the data on legal settlements and housing

[^12](columns 2 and 5) do not allow us to examine exit as an outcome in these contexts.
Our result in the housing setting is likely insignificant due to the small sample size (176 offer triples). One possible explanation for the lack of a significant effect on acceptance in the setting of auto rickshaw rides is, this specification compares the acceptance rate of a split offer with nearby offers and, as shown Figure 1, the nearby offers in this dataset are quite sparse. This is also reflected in the high rate of split offers in the fourth column (19\%). Therefore, we likely lack the power to detect a significant effect in this dataset. This dataset, however, has a unique subset - the scripted bargaining offers that Keniston (2011) randomly assigned - in which we can obtain estimates that are closer to a causal effect of split offers on acceptance rates. As highlighted in Section 2.4, buyers in these scripted sequences make offers that are assigned by the experiment designer rather than arising endogenously. When we estimate equation (3) in this subset of the data, shown in columns 4-5 of Appendix Table A2, we find positive point estimates, and a particularly large, positive effect in those sequences that begin with a buyer offer. Appendix Table A3 presents the results of a similar subsample analysis for equation (4).

In Figure 2, we offer an even more flexible approach to this question, plotting a weighted local linear fit of acceptance and $\gamma_{j, t}$, using observations where $\gamma_{j, t}$ is not a split offer. We also plot in Figure 2 the average acceptance probability for observations that are split offers, along with the 95% confidence bound around this mean. We find that the underlying relationship between the acceptance and $\gamma_{j, t}$ is monotonic in most regions, and split offers are substantially more likely to be accepted than nearby offers with similar $\gamma_{j, t}$ in all datasets except the settings of auto rickshaw rides (where we again lack power locally around 0.5) and housing (where the number of observations is small). In the latter two datasets, the point estimates are still higher at split offers.

The striking implication overall is that, even across these widely varying field settings, split-the-difference offers are more likely to be accepted than even a slightly more favorable offer. This suggests that a preference toward splitting the difference between the two most recent offers is a norm followed not only by the proposer of these offers but also by the receiver, consistent with the notion we model in Section 4.2. These results are reminiscent of findings in a wide range of laboratory ultimatum games (e.g., Roth et al. 1991), which show receivers frequently rejecting offers of less than half of the surplus, but accepting "fair" offers of a $50-50$ split of the surplus nearly 100% of the time.

Figure 2: Probability of an Offer Being Accepted

Panel C: Street Bargaining in a TV Show

Panel E: Bargaining Over Housing

Panel B: Pre-trial Settlement Bargaining

Panel D: Auto Rickshaw Rides Bargaining

Panel F: Trade Tariff Bargaining

Panel G: eBay Best Offer Bargaining

Notes: Each panel shows a local linear fit of the acceptance probability as a function of $\gamma_{j, t}$ along with the acceptance probability of split offers (plus the 95% confidence interval around this point). The fitted values are estimated using locally weighted least squares with a tricube weighting function. To facilitate computation of the local linear estimator in the eBay setting, we use a random sample of 100,000 threads.

5.2 Split Offers Are Frequently Followed by Split Offers

In this section, we address two empirical questions. First, do split offers in period t by one party tend to be followed by the opponent proposing a split offer in period $t+1$? Second, do split offers in period t tend to be followed by split offers by the same party in period $t+2$? Both of these points speak to the question of whether splitting the difference between the two most recent offers is a norm that is perhaps followed more consistently by some agents than others and that, when invoked by one agent, tends to be adopted by the opponent.

To examine this question, we analyze the following linear probability model:

$$
\begin{equation*}
\text { Split }_{j, t}=\beta \text { Split }_{j, t-1}+\epsilon_{j, t}, \tag{5}
\end{equation*}
$$

where we regress the indicator of whether, in period t, an agent proposes a split offer, $S p l i t_{j, t}$, on the indicator of whether the most recent offer, Split $_{j, t-1}$ (which naturally comes from the opponent), also corresponds to a split offer. Panel A in Table 3 shows the results. ${ }^{24}$ We observe positive point estimates in each setting, and these estimates are significant in most columns, suggesting that agents are more likely to propose a split offer when the opponent has just done the same.

In panel B , we consider a version of equation (5) in which we use $t-2$ actions on the right-hand side rather than $t-1$, allowing us to examine whether agents who make split-the-difference offers earlier in the game are more likely to do so again. We find evidence of this effect for the case of settlement and eBay negotiations and a marginally significant effect in the case of auto rickshaw rides.

We examine this latter effect further by exploring whether splitting the difference is a norm followed by certain agents more than by others. To do so, we take advantage of agent identifiers, which we observe in the used car, trade, and eBay bargaining settings. ${ }^{25}$ In a given dataset, we sort agents by the fraction of split offers among all offers they make. We then plot, on the horizontal axis in each panel of Figure 3, the cumulative share of offers made by agents. The solid line corresponds to the cumulative share of offers by these agents that are split offers. If the propensity to propose split offers is roughly equal across all

[^13]Table 3: Repeat Split-the-Difference Behavior

	(1) Cars	$\overline{(2)}$ Settlement	(3) TV Show	(4) Rides	(5) Trade	$\begin{gathered} \text { (6) } \\ \text { eBay } \end{gathered}$
	A: Effect of Opponent's Split Offer					
Split ${ }_{\text {j,t-1 }}$	$\begin{gathered} \hline 0.00304 \\ (0.00763) \end{gathered}$	$\begin{gathered} 0.144^{* * *} \\ (0.00672) \end{gathered}$	$\begin{gathered} 0.117^{* *} \\ (0.0591) \end{gathered}$	$\begin{aligned} & 0.00358 \\ & (0.0193) \end{aligned}$	$\begin{gathered} 0.0928^{* * *} \\ (0.0188) \end{gathered}$	$\begin{gathered} 0.125^{* * *} \\ (0.000840) \end{gathered}$
N	11622	134107	510	2714	2937	2813127
B: Effect of Agent's Own Split Offer						
Split $_{j, t-2}$	$\begin{gathered} 0.0440 \\ (0.0276) \end{gathered}$	$\begin{aligned} & 0.0807^{* * *} \\ & (0.00991) \end{aligned}$	$\begin{gathered} 0.0203 \\ (0.0724) \end{gathered}$	$\begin{aligned} & \hline 0.0708^{*} \\ & (0.0382) \end{aligned}$	$\begin{gathered} -0.000644 \\ (0.0519) \end{gathered}$	$\begin{aligned} & \hline 0.0699^{* * *} \\ & (0.00137) \end{aligned}$
N	2155	83296	343	1121	250	1100490

Notes: Panel A shows the estimated coefficient on the one-period-lagged split indicator from the regression described by equation (5). Panel B shows results instead using the two-period-lagged split indicator. Each column corresponds to a separate data setting. The housing data setting is omitted because no sequence contains more than three offers. * : $p<0.10,{ }^{* *}: p<0.05$, and ${ }^{* * *}: p<0.01$
agents, and if each agent makes a large number of offers, the solid line should be close to the 45 -degree line (the dotted one). This comparison can thus be considered a modified Lorenz curve that measures the "inequality" of split offers among agents.

Figure 3 indeed shows a gap between the solid and dotted lines in each panel. In reality, however, we only observe a few offers made by a given agent, and hence a large part of the area between the solid line and the 45 -degree line is due to sampling noise. ${ }^{26}$ To construct a more meaningful benchmark, we consider a case where each agent has the same probability to propose a split offer, with this probability given by the split rate reported in Table 2. Using this split rate, we simulate a fake split indicator for each observation following a Bernoulli distribution. We plot our cumulative share of split offers based on these fake indicators using the dashed line in Figure 3, which should lie between the 45-degree line and the curve plotted using the real data.

Comparing the dashed and solid lines in Figure 3, we find evidence that some agents have a stronger proclivity toward split-the-difference than others. This is particularly the case in the eBay and trade settings, where the dashed line is farther from the solid line. In the used-car setting, the solid and dashed lines are close, indicating that the propensity to make split-the-difference offers is roughly uniform across agents.

[^14]Figure 3: Some Agents More Likely to Make Split Offers

Panel C: eBay Best Offer Bargaining

Notes: Each panel ranks agents by the fraction of split offers among all offers they make and plots their cumulative share of total offers on the x-axis and the cumulative share split offers on the y-axis. The solid lines use the real data. The dashed lines use simulated split indicators assuming every agent has the same propensity to propose split offers. The dotted line indicates the 45-degree line.

5.3 The Two Most Recent Offers Are Special

Our analysis in Section 3 demonstrates robust evidence across a wide spectrum of settings that a modal strategy in real-world bargaining is to make offers that split the difference between the two most recent offers. Here, we explore whether it is indeed the two most recent offers that serve as the most prominent anchor points in players' formation of a notion of the potential pie to split fairly, as in our theoretical explanation in Section 4.2, or whether other anchor points are also common. For example, it is possible that offers splitting the difference between earlier offers in the game (prior to the two most recent offers) are also common. For example, in a sequence $\{100,50,90,70\}$, a subsequent offer splitting the difference between the two most recent offers would be 80 , but it may be that 75 (which splits the difference between the first two offers) is also a focal point for players in this game.

To examine this possibility, we define placebo concession by treating the proposed amount in round t as a convex combination of offers from earlier rounds of the game. For example, for $t=4$, we can treat the proposed amount as a convex combination of offers from the first and second rounds, which we define as $\gamma_{j, 4}^{3}=\frac{p_{j, 4}-p_{j, 1}}{p_{j, 2}-p_{j, 1}}$. In general, for $t \geq 4$ and $s<t$, the placebo concession is defined as follows:

$$
\begin{equation*}
\gamma_{j, t}^{s}=\frac{p_{j, t}-p_{j, s-2}}{p_{j, s-1}-p_{j, s-2}}, t \geq 4,3 \leq s<t \tag{6}
\end{equation*}
$$

where t is the round in which the current offer is evaluated, and $s<t$ is the round in which offers from rounds $s-1$ and $s-2$ actually were the two most recent offers. If negotiating agents care most about fairness as defined by an equal split of the two most recent offers, we expect less mass at 0.5 for the placebo concession than in our main results from Section 3 .

For this analysis, we focus on the three datasets for which we have the longest sequences, as they allow us to construct the placebo concession metric: used car bargaining, pretrial settlement bargaining, and eBay bargaining. Figure 4 plots the distribution of true concession and placebo concession in these three datasets. In the left column, we replicate the histograms of true concession weights from Figure 1. In the middle column, we plot histograms of the placebo concession weights based on bargaining offers in earlier rounds, $\gamma_{j, t}^{s}, t \geq 4,3 \leq s<t$, as defined in equation (6).

In the third column of Figure 4, we focus on a restricted sample in which we drop cases that can mechanically lead to mass points at 0.5 even in the placebo concession weights. As an example, consider an offer sequence with the first four offers being $\{100,60,90,70\}$. A split-the-difference offer at the fifth round would be 80 , but this offer would also represent splitting the difference between the earlier offers of 100 and 60 . Our restricted sample excludes placebo concession weights that are exactly equal to the true concession weights for a given round.

Panels A and C of Figure 4 demonstrate that counteroffers occur halfway between earlier offers of the game (the middle and right columns) less frequently than between the two most recent offers (the left column). In panel B, the pre-trial settlement bargaining, placebo split-the-difference offers are also frequent. However, in both the middle and right figures in panel B, the mass is more uniformly distributed across concession weights in the placebo cases than in the left column, suggesting that the relative likelihood of split-the-difference

Figure 4: Distribution of True Concession and Placebo Concession

True
 Placebo
 Placebo, Restricted

Panel A: Used Car Bargaining

Panel B: Pre-trial Settlement Bargaining

Panel C: eBay Best Offer Bargaining

Notes: Figure shows, in left plots, histograms of true concession weights $\left(\gamma_{j, t}\right)$ as in Figure 1 for the cars (panel A), settlement (panel B), and eBay (panel C) settings. In the middle plots, we show histograms of the placebo concession weights. In the right plots, we show histograms of the placebo concession weights restricting the sample to exclude observations that are mechanically equal to 0.5 .
offers is the highest when considering the two most recent offers.
To formally test whether the masses at 0.5 are different in the true vs. placebo concession weights, we calculate the fraction of split-the-difference offers (as in Section 5.1) for the true concession weights, placebo concession weights, and their differences, as well as standard errors on each of these. ${ }^{27}$ We also compute the fraction of split offers among placebo concession weights in the restricted sample. Table 4 presents the results. In each dataset, we detect a (statistically significantly) larger fraction of split offers using the true concession

[^15]weights than the placebo concession weights, suggesting that players indeed rely more strongly on the two most recent offers than on earlier offers in determining a $50-50$ split.

Table 4: Fraction of Split Offers in True vs. Placebo Concession Weights

	True	Placebo	Difference	Placebo Restricted	Difference	
Panel A: Used Car Bargaining						
Split	0.1823	0.0503	0.1319	0.0614	0.1208	
	(0.0019)	(0.0020)	(0.0023)	(0.0033)	(0.0034)	
N	33,356	14,721		6,674		
	Panel B: Pre-trial Settlement Bargaining					
Split	0.0435	0.0218	0.0217	0.0190	0.0245	
	(0.0004)	(0.0003)	(0.0005)	(0.0003)	(0.0005)	
N	208,463	313,216		292,470		
	Panel C: eBay Best Offer Bargaining					
0.0739						
Split	0.1176	0.0437	0.0424	0.0753		
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	
N	$9,789,903$	$4,353,489$		$3,880,706$		

Notes: Table shows the fraction of split offers among the true concession weights (first column) vs. the placebo concession weights (second column), as well as the difference of these means (third column). The fourth column shows the fraction of split offers among the placebo concession weights in the restricted sample, and the fifth column shows the difference between this mean and the true concession weight fraction. Standard errors are shown in parentheses. Panel A shows this analysis for the cars sample, panel B for the pre-trial settlement sample, and panel C for the eBay sample.

5.4 Splitting Based on Private Information

We also analyze whether agents tend to propose offers that split the difference between a publicly known threshold (a previous offer) and a privately known quantity that relates to agents' values. For this analysis, we exploit a number of privately known variables specific to several of our settings, including the secret reserve price known only to the seller in the used-car setting; the reserve/loss estimate known only to the "buyer" (the insurer) in the settlement negotiation setting; and the auto-accept or auto-decline prices that are known only to the seller in the eBay setting. The importance of these variables is that they are each privately known to only one side; thus, these variables allow us to examine whether agents' behavior is more consistent with equally splitting a potential surplus based on the public information contained in agents' previous offers (as in our robust argument in Section 4.2),
or whether instead agents appear to offer prices that are fair relative to their own private information.

For this analysis, we follow our construction of placebo concession weights from Section 5.3 , replacing some offer information with these privately known quantities. We describe this analysis and results in detail in Appendix C. The bulk of the evidence from this exercise suggests that split-the-difference behavior is less related to such privately known values and more related to the two most recent offers.

5.5 When are Split-the-Difference Offers Made?

The theory that we develop in Section 4.2 suggests that agents make split-the-difference offers when these constitute a "fair" split of the potential surplus, defined in a sense that is robust to any possible beliefs of either player. Yet, the set of cases in which split-the-difference offers might occur remains constrained, either because the mid-point between the two previous offers might be lower than the seller's true value or higher than the buyer's, or because a very demanding offer from the opponent might be seen as "unfair" and thus not deserving of a "good faith" split-the-difference counteroffer. Both of these arguments suggest that when a buyer's offer is only a small fraction of the seller's initial offer, we are unlikely to observe a subsequent split-the-difference offer, with the same being true for relatively high seller offers. Conversely, when the difference between previous offers is very small-for instance, within a few percentage points - the size of potential surplus may be small, and fairness concerns might be less relevant.

Figure 5 examines these patterns, showing the probability that an agent makes a split offer in round $t=3$ as a function of the ratio of the first two offers. In sequences that begin with seller offers, this is the ratio of the buyer's first offer to the seller's first offer, and the reverse is true in sequences that begin with buyer offers; thus, the ratio is always between zero and one. We cannot examine this in the trade setting, where the first offer is zero.

In all six datasets in Figure 5, we find that the probability of a split offer is lower when the buyer's offer is a very small fraction of the seller's (that is, when the gap is relatively large), and then increases initially. When the buyer's and seller's previous offers are relatively close, the chance of a split counteroffer decreases again in the TV, rides, and housing cases. In these cases, split offers are most likely when the ratio of previous offers lies in the $60 \%-90 \%$ range. For these values, where the opponent's offer is not too "unreasonable," but the gains

Figure 5: Split Probability as a Function of Ratio of First Two Offers

Panel C: Street Bargaining in a TV Show

Panel E: Bargaining Over Housing

Panel B: Pre-trial Settlement Bargaining

Panel D: Auto Rickshaw Rides Bargaining

Panel F: eBay Best Offer Bargaining

Notes: Each panel shows, on the vertical axis, the probability that the third offer in the sequence is a split offer. On the horizontal axis is the ratio previous buyer offer and previous seller offer, regardless of order. The line in each plot is a weighted local linear fit. To facilitate computation of the local linear estimator in the eBay setting, we use a random sample of 100,000 threads.
from bargaining may still be substantial, agents are most likely to adopt the fairness norm. For the other three settings - cars, settlement, and eBay, which also correspond to the cases where we have the most data-we see the frequency of split offers increase globally as the ratio increases.

5.6 Splitting When There is Only One Previous Offer

We present a further test of the idea that negotiating agents' behavior is consistent with the potential surplus-split argument we propose in Section 4.2. Here, we consider settings in which the seller makes the first offer. When it is the buyer's turn to make the first counteroffer, there is only one previous offer to which agents can apply an optimisticinference potential-surplus view. The most optimistic lower bound on the seller's value in such cases is therefore zero. For example, in the eBay setting, suppose a seller posts a list price of $\$ 100$. If the buyer rejects this offer, the history of rejected offers from which the players can make inferences will consist only of the rejected list price. What, then, should be the notion of fairness toward which agents gravitate? In the spirit of our robust argument, the potential surplus at this stage of the game is the range from $\$ 0$ to $\$ 100$, an equal split of which is an offer of $\$ 50$.

This same argument can be applied to any of our settings in which the seller moves first. ${ }^{28}$ Among our data settings, these include the subset of settlement bargaining where the plaintiff starts, the subset of rides bargaining where the driver starts, and eBay bargaining. We also examine the trade bargaining case here, where, as we explain in Section 2.6, we set zero as the first bargaining offer throughout the paper. In Figure 6, we examine where the buyer's offer in these settings lies relative to zero and relative to the seller's first offer. In the rides, trade, and eBay settings, we observe a mass point at 0.5 (although the mass point at 0.5 in the rides case is similar in size to that at about 0.6 or 0.7). These mass points are consistent with agents focusing on the halfway point of the potential surplus even at this early stage of the game when that potential surplus is defined by zero and the first seller offer.

Pre-trial settlement bargaining in panel A is the one setting in Figure 6 in which the first offer is not frequently a $50-50$ split between 0 and the first offer. There we observe a

[^16]Figure 6: Splitting the Difference Between Zero and the First Proposal

Panel A: Settlement Bargaining, Plaintiff Starts

17,170 observations
Panel C: Trade Tariff Bargaining

Panel B: Rides Bargaining, Driver Starts

708 observations
Panel D: eBay Best Offer Bargaining

Notes: Histograms of concession weights defined as where the second offer in a thread lies relative to the first offer and zero, where the first offer is from a seller-like agent, meaning the agent who wants the price higher. Thus, panel A uses only settlement threads starting with the plaintiff in panel A and rides threads starting with the driver in panel B. In panel D—eBay bargaining-all threads start with a seller. In panel C-trade bargaining-we already treat zero as the first offer throughout the paper.
slight uptick at 0.5 relative to surrounding points, but the contrast is much smaller than in the other panels. This finding gives some insight into the limits of split-the-difference behavior. In this setting, the plaintiff's initial offer is often exorbitant relative to where the bargaining eventually ends; thus, a halfway offer on the part of the buyer (i.e., the insurer) would typically be overly generous (and might often be higher than the insurer's valuation, i.e., the expected court ruling). Housing bargaining would exhibit a similar result: it would be unheard of for a buyer to counter at a price that is 50% of the seller's list price. Such an offer would undoubtedly give surplus to the buyer, but it would surely not be seen as "fair" by the seller, and panel E of Figure 5 demonstrates that indeed buyers do not make such low-ball offers. These potential constraints on split offers may drive the broader patterns observed in Section 5.5.

5.7 Alternative Causes of Split-the-Difference Offers

In this section, we consider two alternative theories for why a $50-50$ split between offers is a modal outcome in real-world settings. First, rather than being driven by an equitable split of potential surplus, agents' split-the-difference behavior may arise simply because it is easier (cognitively) to select the midpoint between the past two offers than to compute the optimal (surplus-maximizing) offer. While this may be one reason why $50-50$ offers are selected, this argument alone fails to explain much of the empirical patterns surrounding split offers. In particular, it cannot explain why split offers are accepted more frequently and cause less exit, nor would it explain why split offers are frequently followed by other split offers. Furthermore, in high-stakes negotiations - some of which involve highly experienced professionals, such as insurance companies, car dealers, or trade negotiators - one would suppose that computational constraints are relatively less important. ${ }^{29}$ Yet our results show that split offers are common in each of these settings.

A second alternative explanation is that split offers are a signal of a player's "best and final" offer, explaining their higher likelihood of acceptance. Yet to rationalize a split-thedifference offer as the optimal final offer, an agent must believe that her opponent's value is uniformly distributed between the last two offers, a knife-edge case that seems somewhat theoretically ad-hoc. ${ }^{30}$ Empirically, the most straightforward version of the split-offer-as-final-offer theory is clearly rejected by the data, where we frequently see players continuing to negotiate after a split offer is rejected.

While we cannot totally reject these alternative mechanisms, we argue that the consistent patterns of behavior surrounding split-the-difference offers suggest a strong role played by a fairness norm.

[^17]
6 Conclusion

Our study provides extensive evidence from several unique empirical settings-cars, insurance claims, entertainment, transportation, housing, trade, and eBay - that negotiating agents gravitate toward offers that split the difference between the two most recent offers. Split offers are more likely to be accepted by the receiver, less likely to be followed by a breakdown of negotiations, and are more likely to be followed by subsequent split offers. We also show that it is the two most recent offers in particular that agents are most likely to favor splitting equally, and that split-the-difference behavior is constrained by the disparity between the two previous offers. Finally, we demonstrate that some agents are more likely than others to follow split-the-difference patterns of behavior.

From prior experimental work on ultimatum games and bargaining with complete information, it is reasonable to believe that $50-50$ surplus-sharing is supported by fairness norms. But in our settings, where agents have incomplete information, it is not obvious a priori how they could possibly view a 50-50 split of the two most recent offers as a "fair" outcome. Our study demonstrates that this behavior can arise in a PBE, but such behavior does not actually represent an equal split of surplus between agents, and the equilibrium is far from unique. Thus, while split-the-difference behavior is compatible with a PBE, it is not uniquely predicted by it. As an alternative, we offer a new, robust-inference argument rationalizing split-the-difference behavior: the two most recent offers constitute bounds on potential surplus corresponding to the most optimistic inference that agents could make about one another when those inferences are based only on previous rejections and on the common knowledge that each agent is rational. Other explanations of split-the-difference behavior do not appear fully consistent with our findings.

Our evidence suggests that the central role of fairness norms in popular press accounts of bargaining and laboratory experiments is empirically important in a wide range of real-world negotiations. We see this both as a promising window into the effects of behavioral economics in settings with information asymmetries, as well as a cautionary tale for estimation: models of bargaining that rely on traditional surplus maximization for identification may omit systematic behavioral patterns and yield biased parameters. Conversely, the counterfactual effects of policy changes on the outcomes of negotiations are also likely to be affected by these policies' interaction with agents' preference for split-the-difference offers. An interesting
avenue for future research would be to explore the welfare implications of these norms, which may be feasible given the richness of many of these datasets.

References

Andreoni, J. and Bernheim, B. D. (2009). Social image and the 50-50 norm: A theoretical and experimental analysis of audience effects. Econometrica, 77(5):1607-1636.

Andreoni, J. and Miller, J. (2002). Giving according to garp: An experimental test of the consistency of preferences for altruism. Econometrica, 70(2):737-753.

Ausubel, L., Cramton, P., and Deneckere, R. (2002). Bargaining with incomplete information. Handbook of Game Theory, 3:1897-1945.

Ausubel, L. M. and Deneckere, R. J. (1992). Bargaining and the right to remain silent. Econometrica, 60(3):597-625.

Backus, M., Blake, T., Larsen, B., and Tadelis, S. (2020). Sequential bargaining in the field: Evidence from millions of online bargaining interactions. Quarterly Journal of Economics, 135(3):1319-1361.

Bagwell, K., Staiger, R. W., and Yurukoglu, A. (2020). Multilateral trade bargaining: A first look at the GATT bargaining records. American Economic Journal: Applied Economics, 12(3):72-105.

Battigalli, P. and Siniscalchi, M. (2002). Strong belief and forward induction reasoning. Journal of Economic Theory, 106(2):356-391.

Bellemare, C., Kröger, S., and Van Soest, A. (2008). Measuring inequity aversion in a heterogeneous population using experimental decisions and subjective probabilities. Econometrica, 76(4):815-839.

Binmore, K., Shaked, A., and Sutton, J. (1985). Testing noncooperative bargaining theory: A preliminary study. American Economic Review, 75(5):1178-1180.

Binmore, K., Shared, A., and Sutton, J. (1989). An outside option experiment. Quarterly Journal of Economics, 104(4):753-770.

Bochet, O., Khanna, M., and Siegenthaler, S. (2021). Beyond the dividing pie: Multi-issue bargaining in the laboratory. Working Paper, NYU Abu Dhabi.

Bolton, G. E. (1991). A comparative model of bargaining: Theory and evidence. American Economic Review, 81(5):1096-1136.

Bolton, G. E. and Ockenfels, A. (2000). ERC: A theory of equity, reciprocity, and competition. American Economic Review, 90(1):166-193.

Camerer, C. F. (2011). Behavioral game theory: Experiments in strategic interaction. Princeton University Press.

Cameron, L. A. (1999). Raising the stakes in the ultimatum game: Experimental evidence from indonesia. Economic Inquiry, 37(1):47-59.

Chatterjee, K. and Samuelson, L. (1988). Bargaining under two-sided incomplete information: The unrestricted offers case. Operations Research, 36(4):605-618.

Elster, J. (1989). Social norms and economic theory. Journal of Economic Perspectives, 3(4):99-117.

Fehr, E. and Gächter, S. (2000). Fairness and retaliation: The economics of reciprocity. Journal of Economic Perspectives, 14(3):159-181.

Fehr, E. and Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. Quarterly Journal of Economics, 114(3):817-868.

Freyberger, J. and Larsen, B. (2021). How well does bargaining work in consumer markets? A robust bounds approach.

Green, E. A. and Plunkett, E. B. (2022). The science of the deal: Optimal bargaining on ebay using deep reinforcement learning. In Proceedings of the 23rd ACM Conference on Economics and Computation, pages 1-27.

Gul, F. and Sonnenschein, H. (1988). On delay in bargaining with one-sided uncertainty. Econometrica, 56(3):601-611.

Gul, F., Sonnenschein, H., and Wilson, R. (1986). Foundations of dynamic monopoly and the Coase conjecture. Journal of Economic Theory, 39(1):155-190.

Hernandez-Arenaz, I. and Iriberri, N. (2018). Women ask for less (only from men): Evidence from bargaining in the field. Journal of Economic Behavior \mathcal{E} Organization, 152:192-214.

Huang, J., Kessler, J. B., and Niederle, M. (2020). Fairness concerns are less relevant when agents are less informed. Working Paper.

Jiang, Z. (2022). An empirical bargaining model with left-digit bias: A study on auto loan monthly payments. Management Science, 68(1):442-465.

Keniston, D. (2011). Bargaining and welfare: A dynamic structural analysis. Working Paper.

Larsen, B. J. (2021). The efficiency of real-world bargaining: Evidence from wholesale used-auto auctions. Review of Economic Studies, 88(2):851-882.

Lin, P.-H., Brown, A. L., Imai, T., Wang, J. T.-y., Wang, S. W., and Camerer, C. F. (2020). Evidence of general economic principles of bargaining and trade from 2,000 classroom experiments. Nature Human Behaviour, 4(9):917-927.

Ochs, J. and Roth, A. (1989). An experimental study of sequential bargaining. American Economic Review, 79(3):355-384.

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection. Econometrica, 52(4):1029-1050.

Pope, D. G., Pope, J. C., and Sydnor, J. R. (2015). Focal points and bargaining in housing markets. Games and Economic Behavior, 93:89-107.

Prescott, J., Spier, K. E., and Yoon, A. (2014). Trial and settlement: A study of high-low agreements. Journal of Law and Economics, 57(3):699-746.

Rabin, M. (1993). Incorporating fairness into game theory and economics. American Economic Review, 83(5):1281-1302.

Roth, A. E. (1985). Toward a focal point theory of bargaining. In Roth, A. E., editor, Game-Theoretic Models of Bargaining, volume 259, pages 265-67. Cambridge University Press Cambridge, UK.

Roth, A. E. (1995). Bargaining experiments. In Kagel, J. H. and Roth, A. E., editors, The Handbook of Experimental Economics. Princeton University Press, Princeton, NJ.

Roth, A. E. and Malouf, M. W. (1979). Game-theoretic models and the role of information in bargaining. Psychological Review, 86(6):574.

Roth, A. E., Prasnikar, V., Okuno-Fujiwara, M., and Zamir, S. (1991). Bargaining and market behavior in jerusalem, ljubljana, pittsburgh, and tokyo: An experimental study. American Economic Review, 81(5):1068-1095.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica, 50(1):97109.

Slonim, R. and Roth, A. E. (1998). Learning in high stakes ultimatum games: An experiment in the Slovak Republic. Econometrica, 66(3):569-596.

Stokey, N. L. (1981). Rational expectations and durable goods pricing. Bell Journal of Economics, 12(1):112-128.

Voss, C. and Tahl, R. (2016). Never Split the Difference. Random House Business.

For Online Publication Only

A Proofs

A. 1 Proof of Proposition 1

The following preliminary lemma first establishes an equivalent way to represent sequences of split-the-difference offers.

Lemma 1. Consider any sequence $\left\{x_{t}\right\}_{t=1}^{\infty}$, such that for $t \geq 3, x_{t}=0.5 x_{t-2}+0.5 x_{t-1}$. This is equal to the sequence $\left\{y_{t}\right\}_{t=1}^{\infty}$, defined by $y_{t}=\bar{x}+\left(-\frac{1}{2}\right)^{t-1} \alpha$, where $\bar{x}=\frac{1}{3} x_{1}+\frac{2}{3} x_{2}=$ $\lim _{t \rightarrow \infty} x_{t}$ and $\alpha=x_{1}-\bar{x}$.

Proof. The first two terms are identical, since $y_{1}=\bar{x}+x_{1}-\bar{x}=x_{1}$ and $y_{2}=\bar{x}-\frac{1}{2}\left(x_{1}-\bar{x}\right)=$ $\frac{3}{2} \bar{x}-\frac{1}{2} x_{1}=x_{2}$. For any $t \geq 3$,

$$
\begin{equation*}
\frac{1}{2} y_{t-2}+\frac{1}{2} y_{t-1}=\bar{x}+\frac{1}{2}\left(-\frac{1}{2}\right)^{t-3} \alpha+\frac{1}{2}\left(-\frac{1}{2}\right)^{t-2} \alpha=\bar{x}+\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{t-2} \alpha=y_{t} . \tag{7}
\end{equation*}
$$

We now argue that, for δ close enough to 1 , there exists a PBE in which every on-path offer is

$$
\begin{equation*}
p_{t}=\frac{1}{3}+\left(-\frac{1}{2}\right)^{t-1} \alpha \tag{8}
\end{equation*}
$$

where $\alpha=\frac{2(1-\delta)}{3(4-\delta)}$. We construct an equilibrium such that proposers are deterred from making offers not equal to equation (8) on the path of play.

For convenience, we will represent the game so that no player is called to play twice in a row; at each point, the receiver either accepts the current offer, chooses a counteroffer, or quits. This simplifies the application of the one-stage deviation principle, and has no substantial effect on the results. ${ }^{31}$ The game proceeds as follows:

1. At $t=0$, the seller makes an offer $p_{1} \in \mathbb{R}$ or quits.
2. For all $t \in\{1,3,5, \ldots\}$, the buyer either accepts the offer p_{t}, chooses a counteroffer $p_{t+1} \in \mathbb{R}$, or quits.

[^18]3. For all $t \in\{2,4,6, \ldots\}$, the seller either accepts the offer p_{t}, chooses a counteroffer $p_{t+1} \in \mathbb{R}$, or quits.

We construct an equilibrium with the following path of play, in which we denote $\phi \equiv \frac{4-\delta}{4(1-\delta)}$:

1. For all t, on the path of play, the offer p_{t} is as in equation (8).
2. At $t=0$, the seller offers p_{1} if $s \leq p_{1}$ and quits otherwise.
3. For all $t \in\{1,3,5, \ldots\}$, the buyer accepts if $b>\frac{1}{3}+\phi\left(p_{t}-\frac{1}{3}\right)$, quits if $b<p_{t+1}$, and counters with p_{t+1} otherwise.
4. For all $t \in\{2,4,6, \ldots\}$, the seller accepts if $s<\frac{1}{3}-\phi\left(\frac{1}{3}-p_{t}\right)$, quits if $s>p_{t+1}$, and counters with p_{t+1} otherwise.
5. Whenever a player observes any off-path behavior, she believes her opponent is the weakest possible type ($b=1$ or $s=0$, respectively).

We proceed by the one-stage deviation principle, showing that no one-stage deviation is profitable in expectation for any type.

A.1.1 Deviations that Do Not Involve Off-path Offers

We start by proving that at any public history such that all previous offers are as specified by Equation (8), the active player cannot profitably deviate by accepting, quitting, or making the next offer specified by (8).

Consider the position of a buyer who receives an offer p_{t} in an odd period (a symmetric argument works for a seller who receives an offer in an even period). The seller made an offer of p_{t}, so the buyer can infer $s \leq p_{t}=\frac{1}{3}+\left(\frac{1}{2}\right)^{t-1} \alpha$. The seller rejected an offer of p_{t-1}, so the buyer can infer $s \geq \frac{1}{3}-\phi\left(\frac{1}{3}-p_{t}\right)=\frac{1}{3}-\phi\left(\frac{1}{2}\right)^{t-2} \alpha$. If both these bounds hold with equality, we have that $s \sim U\left[\frac{1}{3}-\phi\left(\frac{1}{2}\right)^{t-2} \alpha, \frac{1}{3}+\left(\frac{1}{2}\right)^{t-1} \alpha\right]$.

Consider the threshold type \underline{b} that is indifferent between accepting and rejecting. This threshold type satisfies $\underline{b}-\frac{1}{3}=\phi\left(p_{t}-\frac{1}{3}\right)=\phi\left(\frac{1}{2}\right)^{t-1} \alpha$. The threshold type's payoff from accepting at t is

$$
\begin{equation*}
\underline{b}-p_{t}=\underline{b}-\left(\frac{1}{3}+\left(\frac{1}{2}\right)^{t-1} \alpha\right)=(\phi-1)\left(\frac{1}{2}\right)^{t-1} \alpha . \tag{9}
\end{equation*}
$$

The threshold type will make the counteroffer at $t+1$, since $\underline{b}>\frac{1}{3}>p_{t+1}$, and if that offer is rejected, will accept the seller's offer at $t+2$, since $\underline{b}-\frac{1}{3}>\phi\left(p_{t+2}-\frac{1}{3}\right)$. Given the assigned strategy profile, the expected utility from rejection is

$$
\begin{align*}
\frac{\frac{3 \phi}{4}}{\phi+\frac{1}{2}} & \delta\left(\underline{b}-p_{t+1}\right)+\frac{\frac{\phi}{4}+\frac{1}{8}}{\phi+\frac{1}{2}} \delta^{2}\left(\underline{b}-p_{t+2}\right) \\
= & \frac{\frac{3 \phi}{4}}{\phi+\frac{1}{2}} \delta\left(\phi\left(\frac{1}{2}\right)^{t-1} \alpha+\left(\frac{1}{2}\right)^{t} \alpha\right)+\frac{\frac{\phi}{4}+\frac{1}{8}}{\phi+\frac{1}{2}} \delta^{2}\left(\phi\left(\frac{1}{2}\right)^{t-1} \alpha-\left(\frac{1}{2}\right)^{t+1} \alpha\right) \\
& =\left(\frac{1}{2}\right)^{t-1} \alpha\left[\frac{\frac{3 \phi}{4}}{\phi+\frac{1}{2}} \delta\left(\phi+\frac{1}{2}\right)+\frac{\frac{\phi}{4}+\frac{1}{8}}{\phi+\frac{1}{2}} \delta^{2}\left(\phi-\frac{1}{4}\right)\right] . \tag{10}
\end{align*}
$$

Equating (9) and (10) yields

$$
\begin{equation*}
\phi-1=\frac{\frac{3 \phi}{4}}{\phi+\frac{1}{2}} \delta\left(\phi+\frac{1}{2}\right)+\frac{\frac{\phi}{4}+\frac{1}{8}}{\phi+\frac{1}{2}} \delta^{2}\left(\phi-\frac{1}{4}\right) \tag{11}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\phi=\frac{4-\delta}{4(1-\delta)} . \tag{12}
\end{equation*}
$$

To make the stationary argument above work even for $t=1$, we have chosen α so that, conditional on the seller making the offer instead of quitting at $t=0$, we have $s \sim U\left[\frac{1}{3}-\phi\left(\frac{1}{2}\right)^{t-2} \alpha, \frac{1}{3}+\left(\frac{1}{2}\right)^{t-1} \alpha\right]$. This is true if $\phi \alpha=\frac{1}{6}$, that is, $\alpha=\frac{2(1-\delta)}{3(4-\delta)}$.

Take any $t \in\{1,3,5, \ldots\}$. For a seller with $s>p_{t}$, quitting yields a payoff of 0 , and making the offer yields no more than 0 . For a seller with $s \leq p_{t}$, quitting yields a payoff of 0 , and making the offer yields at least 0 . For a buyer receiving an offer of p_{t}, the payoff from accepting minus the payoff from rejecting is non-decreasing in b; since the threshold type is indifferent, no type can benefit from deviating. A symmetric argument holds for $t \in\{2,4,6, \ldots\}$.

A.1.2 Deviations at Histories Involving Off-path Offers

We now construct beliefs and strategies that yield the path of play in Proposition 1, and prove these are a PBE. It is sufficient to specify, for each t and each offer not equal to $\frac{1}{3}+\left(-\frac{1}{2}\right)^{t-1} \alpha$, beliefs and continuation strategies such that:

1. Those beliefs and continuation strategies form a PBE of the subgame that follows from the deviation.
2. On the path of play, no type of the player called to play at t has a profitable one-stage deviation to a counteroffer of $p_{t+1} \neq \frac{1}{3}+\left(-\frac{1}{2}\right)^{t} \alpha$.

We will deal with two cases separately: deviations at the first offer p_{1} and deviations at any subsequent offer.

Deviations at the first offer

If the seller chooses $p_{1} \neq \frac{1}{3}+\alpha$, then we specify the beliefs $s=0$ and $b \sim U[0,1] .{ }^{32}$ This corresponds to the "no-gap" case in models of bargaining with one-sided incomplete information. ${ }^{33}$

There exists a PBE of this bargaining game such that, if the buyer has not deviated previously, the following holds:

1. In even periods t, the lowest-cost seller $s=0$ offers $p_{t+1}=\frac{\sqrt{1-\delta^{2}}}{1+\sqrt{1-\delta^{2}}} \bar{b}_{t}$, where \bar{b}_{t} is the highest buyer type that has not yet accepted.
2. In odd periods t, the buyer accepts p_{t} if $b \sqrt{1-\delta^{2}}>p_{t}$ and counteroffers with $p_{t+1}=0$ otherwise.

The seller's behavior in even periods is constructed as in Example 1 of Gul et al. (1986), which is due to Stokey (1981). For δ close enough to 1 , the buyer's behavior in odd periods can be enforced by specifying the belief $b=1$ for any deviating offer $p_{t+1} \neq 1$ (Gul and Sonnenschein, 1988, p. 610).

We specify that if the seller chooses $p_{1} \neq \frac{1}{2}+\alpha$, then continuation play is as in the above equilibrium. Now we prove that, for δ close enough to 1 , no type of s profits by deviating in this way.

After a first-offer deviation, no seller strategy results in an accepted price greater than $\sqrt{1-\delta^{2}}$. Consequently, an upper bound for the seller's payoff after a first-offer deviation is $\max \left\{\sqrt{1-\delta^{2}}-s, 0\right\}$.

Case 1: Suppose $s \leq \frac{1}{6}$. The buyer accepts an offer of $p_{1}=\frac{1}{3}+\alpha$ if $b>\frac{1}{3}+\phi \alpha=\frac{1}{2}$. Thus a lower bound for the seller's payoff from this offer is $\frac{1}{2}\left(\frac{1}{3}+\alpha-s\right) \geq \frac{1}{2}\left(\frac{1}{6}+\alpha\right)$. An

[^19]upper bound for the seller's payoff from deviating is $\sqrt{1-\delta^{2}}$.
\[

$$
\begin{equation*}
\lim _{\delta \rightarrow 1} \frac{1}{2}\left(\frac{1}{6}+\alpha\right)=\frac{1}{12}>0=\lim _{\delta \rightarrow 1} \sqrt{1-\delta^{2}} . \tag{13}
\end{equation*}
$$

\]

Thus, for δ close enough to 1 , the seller cannot gain by deviating at the first offer.
Case 2: Suppose $s>\frac{1}{6}$. The seller's payoff in the constrained game is at least 0 . The seller's payoff from the deviation is no more than $\max \left\{\sqrt{1-\delta^{2}}-\frac{1}{6}, 0\right\}$, and for δ close enough to $1, \sqrt{1-\delta^{2}}-\frac{1}{6}<0$, so the seller cannot gain by deviating at the first offer.

Deviations at later offers by the seller

Suppose that at $t \in\{2,4,6, \ldots\}$, the seller facing offer $p_{t}=\frac{1}{3}+\left(-\frac{1}{2}\right)^{t-1} \alpha$ makes an off-path counteroffer $p_{t+1} \neq \frac{1}{3}+\left(-\frac{1}{2}\right)^{t} \alpha$.

Upon this deviation, we specify the optimistic belief $s=0$. At t, we have that $b \sim$ $U\left[\frac{1}{3}-\frac{1}{2^{t-1}} \alpha, \frac{1}{3}+\frac{1}{2^{t-2}} \phi \alpha\right]$. This is the "gap" case.

Seller punishment construction

We now construct a PBE of the alternating-offer bargaining game starting from a deviating offer by the seller, such that as δ goes to 1 , the transaction price converges to strictly less than the lower bound on b. We denote that lower bound as $\underline{b} \equiv \frac{1}{3}-\frac{1}{2^{t-1}} \alpha$. The strategies are as follows:

1. If all the buyer's previous offers (since the deviation) are equal to $p_{B} \equiv \underline{b} \frac{\delta}{1+\delta}$, then the buyer of type b accepts an offer of p if

$$
\begin{equation*}
b-p \geq \delta\left(b-p_{B}\right) \tag{14}
\end{equation*}
$$

and counteroffers with p_{B} otherwise.
2. If the seller of type 0 receives an offer of p_{B}, then he accepts.
3. If the seller of type 0 receives an offer not equal to p_{B}, then he believes that $b=1$, and types $b=1$ and $s=0$ proceed to play as in the full-information alternating-offer bargaining game.

We now verify that this is an equilibrium via the one-stage deviation principle. By inspection, the assigned strategies are optimal if the buyer makes an offer not equal to p_{B}.

We now check histories at which the buyer has only made offers equal to p_{B}. Suppose the buyer receives an offer of p. Accepting p yields payoff $b-p$ and making a counter offer of p_{B} yields $\delta\left(b-p_{B}\right)$. Thus, he prefers accepting p to making a counteroffer of p_{B} if and only if $b-p \geq \delta\left(b-p_{B}\right)$. If he makes any counteroffer other than p_{B}, then the lowest price the seller will later accept is $\frac{\delta}{1+\delta}$, so his payoff is at $\operatorname{most} \max \left\{\delta\left(b-\frac{\delta}{1+\delta}\right), 0\right\}$, which is strictly less than his payoff from counteroffering p_{B}.

Suppose the seller receives an offer of p_{B} at t. We now check that it is not profitable to deviate to any counter offer p. A one-stage deviation to p is accepted by the buyer at $t+1$ if equation (14) is satisfied, and otherwise the buyer counteroffers with p_{B} and is accepted at $t+2$.

Given the buyer's strategy, the seller believes that b is uniformly distributed between \underline{b} and \bar{b}, for some $\bar{b} \leq \frac{1}{3}+\frac{1}{2^{t-2}} \phi \alpha$. Thus, the buyer's acceptance threshold is uniformly distributed between $\underline{\tau}$ and $\bar{\tau}$, where $\underline{\tau}=\underline{b}\left(1-\delta+\frac{\delta^{2}}{1+\delta}\right)=\underline{b} \frac{1}{1+\delta}$ and $\bar{\tau}=\bar{b}(1-\delta)+\underline{b} \frac{\delta^{2}}{1+\delta}$

Thus, making an offer of $p \in[\underline{\tau}, \bar{\tau}]$ yields payoff

$$
\begin{equation*}
\frac{\bar{\tau}-p}{\bar{\tau}-\underline{\tau}} \delta p+\frac{p-\underline{\tau}}{\bar{\tau}-\underline{\underline{c}}} \underline{b} \frac{\delta^{3}}{1+\delta} \tag{15}
\end{equation*}
$$

Note that $\bar{b} \leq 2 \underline{b}$, since

$$
\begin{equation*}
\bar{b} \leq \frac{1}{3}+\frac{1}{2^{t-2}} \frac{1}{6} \leq \frac{1}{2} \leq 2\left(\frac{1}{3}-\frac{1}{2^{t-1}} \frac{2(1-\delta)}{3(4-\delta)}\right)=2 \underline{b} \tag{16}
\end{equation*}
$$

$\bar{b} \leq 2 \underline{b}$ implies that $\bar{\tau}-2 \underline{\tau}+\delta^{2} \underline{\tau} \leq 0$, which implies that equation (15) is maximized at $p=\underline{\tau}$. Thus, the seller's maximum payoff from any counteroffer is $\delta \underline{\tau}=\underline{b} \frac{\delta}{1+\delta}=p_{B}$, so the seller cannot profit by rejecting an offer of p_{B}.

No profitable deviations by the seller

Suppose that the history of the game thus far is such that every offer has been consistent with equation (8). The seller faces an offer of $p_{t}=\frac{1}{3}-\frac{1}{2^{t-1}} \alpha$. Given the above punishment strategies, any one-stage deviation to a counteroffer $p_{t+1} \neq \frac{1}{3}+\frac{1}{2^{t}} \alpha$ is accepted only if $p_{t+1} \leq(1-\delta)+p_{t} \frac{\delta}{1+\delta}$, and otherwise leads to a transaction at price $p_{t} \frac{\delta}{1+\delta}$.

Since $p_{t}=\frac{1}{3}-\frac{1}{2^{t-1}} \alpha$ is bounded away from 0 for all $t \in\{2,4,6, \ldots\}$, we can pick δ close enough to 1 so that for all $t \in\{2,4,6, \ldots\}, \delta>\sqrt{1-p_{t}}$, which implies that $(1-\delta)+p_{t} \frac{\delta}{1+\delta}<p_{t}$, and the seller cannot profitably deviate to an off-path offer.

Deviations at later offers by the buyer

Suppose that at $t \in\{1,3,5, \ldots\}$, the buyer facing offer $p_{t}=\frac{1}{3}+\left(-\frac{1}{2}\right)^{t-1} \alpha$ makes an off-path counteroffer $p_{t+1} \neq \frac{1}{3}+\left(-\frac{1}{2}\right)^{t} \alpha$. Upon this deviation, we specify the optimistic belief $b=1$. At t, we have that $s \sim U\left[\frac{1}{3}-\frac{1}{2^{t-2}} \phi \alpha, \frac{1}{3}+\frac{1}{2^{t-1}} \alpha\right]$.

Buyer punishment construction

We now construct a PBE of the alternating-offer bargaining game starting from a deviating offer by the buyer. The construction is essentially symmetric. We denote $\bar{s} \equiv \frac{1}{3}+\frac{1}{2^{t-1}} \alpha$. The strategies are as follows:

1. If all the seller's previous offers (since the deviation) are equal to $p_{S}=\bar{s}+(1-\bar{s}) \frac{1}{1+\delta}$, then the seller of type s accepts an offer of p if

$$
\begin{equation*}
p-s \geq \delta\left(p_{S}-s\right) \tag{17}
\end{equation*}
$$

and counteroffers with p_{S} otherwise.
2. If the buyer of type 1 receives an offer of p_{S}, then he accepts.
3. If the buyer of type 1 receives an offer not equal to p_{S}, then he believes that $s=0$, and types $b=1$ and $s=0$ proceed to play as in the full-information alternating-offer bargaining game.

The argument proceeds as before. The only non-trivial part is checking one-stage deviations by the buyer of type 1 after receiving an offer of p_{S}.

As before, the seller's type is uniformly distributed between some $\underline{s} \geq \frac{1}{3}-\frac{1}{2^{t-2}} \phi \alpha$ and \bar{s}, so the seller's acceptance threshold for a counteroffer p is distributed uniformly between $\underline{\tau} \equiv(1-\delta) \underline{s}+\delta p_{S}$ and $\bar{\tau} \equiv(1-\delta) \bar{s}+\delta p_{S}=\bar{s}+(1-\bar{s}) \frac{\delta}{1+\delta}$. The buyer's payoff from an offer of $p \in[\underline{\tau}, \bar{\tau}]$ is

$$
\begin{equation*}
\frac{p-\underline{\tau}}{\bar{\tau}-\underline{\tau}} \delta(1-p)+\frac{\bar{\tau}-p}{\bar{\tau}-\underline{\tau}} \delta^{2}\left(1-p_{S}\right) \tag{18}
\end{equation*}
$$

Equation 18 is maximized at $p=\bar{\tau}$ if

$$
\begin{equation*}
1-2 \bar{\tau}+\underline{\tau}-\delta\left(1-p_{S}\right) \geq 0 \tag{19}
\end{equation*}
$$

Some algebra reduces this to

$$
\begin{equation*}
2(1-\bar{s}) \geq 1-\underline{s} \tag{20}
\end{equation*}
$$

which holds since $2(1-\bar{s}) \geq 1 \geq 1-\underline{s}$.
Substituting into equation (18), the buyer of type 1 has a payoff of no more than $(1-\bar{s}) \frac{\delta}{1+\delta}=1-p_{S}$ from making a counteroffer, so he cannot profit by rejecting an offer of p_{S}.
No profitable deviations by the buyer Suppose that, so far, every offer has been consistent with equation (8). The buyer faces an offer of $p_{t}=\frac{1}{3}+\frac{1}{2^{t-1}} \alpha$. Given the above punishment strategies, any one-stage deviation to a counteroffer $p_{t+1} \neq \frac{1}{3}-\frac{1}{2^{t}} \alpha$ is accepted only if $p_{t+1} \geq \delta p_{S}=\delta\left(p_{t}+\left(1-p_{t}\right) \frac{1}{1+\delta}\right)$, and otherwise leads to a transaction at price $p_{t}+\left(1-p_{t}\right) \frac{1}{1+\delta}$. Since p_{t} is bounded away from 1 for all $t \in\{1,3,5, \ldots\}$, we can pick δ close enough to 1 so that for all $t \in\{1,3,5, \ldots\}, p_{t}<\delta\left(p_{t}+\left(1-p_{t}\right) \frac{1}{1+\delta}\right)$, so the buyer cannot profitably deviate to an off-path offer.

A. 2 Proof of Proposition 2

Suppose $b<p_{T}^{*}$. Any σ_{B} that accepts p_{T}^{*} at h yields negative utility conditional on h, whereas rejecting at h and at all subsequent histories yields 0 utility. Hence, any σ_{B} that accepts p_{T}^{*} at h is not a sequential best reply to any conditional probability system, which proves Clause 1.

Suppose $b>p_{T}^{*}$. Let σ_{B}^{*} be the buyer strategy such that:

1. If all previous offers have been consistent with the sequence $\left\{p_{t}^{*}\right\}_{t=1}^{T}$ and equal to p_{T}^{*} for $t>T$, then the buyer makes the next offer in the sequence if proposing, and accepts any offer weakly less than p_{T}^{*} if receiving.
2. Else, if the first inconsistent offer was by the seller, then the buyer plays the fullinformation subgame-perfect equilibrium with buyer value p_{T}^{*} and seller cost 0 .
3. Else, the buyer offers p_{T}^{*} and accepts an offer if and only if it is no more than p_{T}^{*}.

Symmetrically, let σ_{S}^{*} be the seller strategy such that:

1. If all previous offers have been consistent with the sequence $\left\{p_{t}^{*}\right\}_{t=1}^{T}$ and equal to p_{T}^{*} for $t>T$, then the seller makes the next offer in the sequence if proposing, and accepts any offer weakly more than p_{T}^{*} if receiving.
2. Else, if the first inconsistent offer was buy the buyer, then the seller plays the fullinformation subgame-perfect equilibrium with buyer value 1 and seller $\operatorname{cost} p_{T}^{*}$.
3. Else, the seller offers p_{T}^{*} and accepts an offer if and only if it exceeds p_{T}^{*}.

Observe that $\sigma_{B}^{*} \in \Sigma_{B}(h)$ and $\sigma_{S}^{*} \in \Sigma_{S}(h)$.
We now specify beliefs for both buyer and seller: on the path of play of $\left(\sigma_{B}^{*}, \sigma_{S}^{*}\right)$, the buyer believes that the seller's strategy is σ_{S}^{*} and her $\operatorname{cost} s=p_{T}^{*}$, and the seller believes that the buyer's strategy is σ_{B}^{*} and her value is $b=p_{T}^{*}$. Following a deviation by the seller, the buyer believes that the seller's cost is 0 and that she will henceforth play the full-information subgame-perfect equilibrium with buyer value p_{T}^{*} and seller cost 0 . Symmetrically, following a deviation by the buyer, the seller believes that the buyer's value is 1 and that he will play the full information SPE with buyer value 1 and seller $\operatorname{cost} p_{T}^{*}$.

For δ close enough to $1, \sigma_{B}^{*}$ is a sequential best reply to the specified beliefs for a buyer with value $b>p_{T}^{*}$. For any history at which the seller made the first deviating offer, σ_{B}^{*} is a sequential best reply by construction, since it specifies that the buyer plays his part in the full-information SPE with buyer value p_{T}^{*} and seller cost 0 . For any history consistent with $\left(\sigma_{B}^{*}, \sigma_{S}^{*}\right)$, playing according to σ_{B}^{*} yields utility $\delta^{T-1}\left(b-p_{T}^{*}\right)$. By contrast, if the buyer deviates to an off-path offer, then the seller will henceforth only offer $\frac{\delta p_{T}^{*}+1}{1+\delta}$ and will only accept offers that exceed $\frac{p_{T}^{*}+\delta}{1+\delta}$. Hence the buyer's utility following a deviating offer is upper bounded by $b-\frac{p_{T}^{*}+\delta}{1+\delta}$. Similarly, the buyer's utility from deviating to accept an earlier offer is upper bounded by $b-\min _{t \in \mathbb{T}_{S}} p_{t}^{*}$, where \mathbb{T}_{S} denotes the periods strictly before T in which the seller made offers. Hence the buyer's gain from deviating first is upper bounded by the expression

$$
\begin{equation*}
\max \left\{b-\frac{p_{T}^{*}+\delta}{1+\delta}, b-\min _{t \in \mathbb{T}_{S}} p_{t}^{*}\right\}-\delta^{T-1}\left(b-p_{T}^{*}\right) \tag{21}
\end{equation*}
$$

which, as $\delta \rightarrow 1$, converges (uniformly in b) to

$$
\begin{equation*}
\max \left\{\frac{p_{T}^{*}-1}{2}, p_{T}^{*}-\min _{t \in \mathbb{T}_{S}} p_{t}^{*}\right\}<0 \tag{22}
\end{equation*}
$$

where the inequality follows since the offer sequence $\left\{p_{t}^{*}\right\}_{t=1}^{T}$ is monotone. This argument yields Clause 2 of Proposition 2. A symmetric argument applies to the seller.

B Additional Cleaning Steps of Datasets

In this section, we describe additional details about our cleaning procedure for each dataset. ${ }^{34}$
Before describing each dataset in more detail, we first show the number of observations that are dropped due to our final restrictions described at the beginning of Section 2. First, we drop any threads in which an agent's offer is an exact repeat of the opponent's previous offer (which logically should have led to the game ending in agreement), but additional offers are recorded afterward (Restriction 1 in Appendix Table A1). Second, we drop any threads in which the seller makes an offer that is strictly below a buyer's offer (Restriction 2). Third, we drop any threads in which a buyer makes an offer that is strictly below her own previous offer or a seller makes an offer that is strictly above her own previous offer (Restriction 3).

Appendix Table A1 shows that fewer than 2% of observations are dropped in most settings. In the settlement, TV show, and housing cases, $19 \%, 24 \%$, and 16%, respectively, are dropped. In these settings, changes to the bargaining environment during the game (such as the arrival of new information), or simply misrecorded offers, may be more prevalent.

Table A1: Observations Dropped

	(1)	(2)	(3)	(4)	(5)	(6)	(7) Cars
Settlement	TV Show	Rides	Housing	Trade	eBay		
\# Threads ≥ 3 rounds	22,134	91,617	268	2,058	210	44,893	$7,057,219$
Restriction 1	22,069	87,390	264	2,058	198	44,732	$7,048,997$
Restriction 2	21,955	80,576	258	2,058	198	44,732	7,029110
Restriction 3	21,734	74,356	204	2,058	176	44,048	$6,976,776$
$\%$ Dropped	1.81%	18.84%	23.89%	0%	16.19%	1.88%	1.14%

Notes: Table shows the number of sequences/threads dropped due to the restrictions described at the beginning of Section 2.

B. 1 Used Car Bargaining in the U.S.

In this data setting, when the auction price falls short of the seller's secret reserve price, the typical next step is for the seller and the highest bidder to engage in bargaining. In some cases, this negotiation may end quickly, with the seller deciding on the spot to not accept

[^20]the auction price and to not negotiate further. In these cases, a buyer who is not the highest bidder may, on occasion, approach the auction house salesperson and make an offer on the car, asking the auction house to call the seller to notify her. We include such sequences in our main analysis. Another possibility in cases when the auction price falls below the reserve price is that the seller and the highest bidder may engage in bargaining and, at the same time, a buyer who is not the highest bidder may approach the auction house and make a "backup offer," which the auction house can turn to if the negotiation between the seller and the highest bidder breaks down. As these backup offers are more complicated to interpret in our alternating-offer framework, we drop any sequences that contain backup offers. We also drop any inexplicable sequences, such as those that end with a counteroffer or end with a party accepting an offer after an opponent had already supposedly ended the negotiations. Neither of these restrictions excludes a large fraction of sequences.

B. 2 Pre-trial Settlement Bargaining from Insurance Claims in the U.S.

The dataset contains multiple proposed offers (an offer here means a proposal from the insurer) or demands (meaning a proposal from the plaintiff) on the same day with no exact timestamp. Sometimes consecutive proposals from the same party are recorded, a pattern that does not satisfy the alternating-offer feature of the bargaining we are analyzing. To construct the bargaining sequences for analysis, we rearrange all bargaining sequences following the rules described below.

1. In each claim, we order all the offers and demands by date.
2. If there are multiple offers on the same day, we order them in the increasing amount.
3. If there are multiple demands on the same day, we order them in the decreasing amount.
4. If there are both offers and demands on the same day, we assume within the same day, demands and offers should be alternating.
5. If there are both offers and demands on the same day, whether this day starts with a demand or an offer follows the following rule:
(a) If the date is the first date in a claim, we assume offers come first.
(b) If the date is not the first date in a claim
i. If the most recent date before this day ends with an offer, we assume this day starts with a demand.
ii. If the most recent date before this day ends with a demand, we assume this day starts with an offer.
6. After we arrange all offers and demands in this way, if there are consecutive offers or demands, we keep the last offer or demand and drop others.

Our main analysis pools together sequences that begin with an offer and those that begin with a demand. When we examine these separately, we find a similar mass point at 0.5 . We also find that split offers are more likely to be accepted regardless of whether the sequence begins with a proposal from the insurer or the plaintiff. These results are shown in the first two columns of Appendix Table A2. Note that some sequences end at round 10, and we have no data on whether round 10 offers were accepted or not. This leads to the total number of observations in Table 1 being slightly larger than that in the analysis that examines acceptance, such as Table 2 and Appendix Table A2.

B. 3 Street Bargaining from a TV Game Show in Spain

The bargaining sequences in the dataset are not necessarily alternating. Sometimes the proposer or the respondent can make consecutive offers. In such cases, we only keep the last offer in consecutive offers made by the same party. We also drop a small number of sequences that start from the respondent, so all remaining sequences start from the proposer.

B. 4 Auto Rickshaw Rides Bargaining in India

As described in the paper, there are two broad types of bargaining: "real" bargaining and "scripted" bargaining. We keep all real bargaining sequences. For scripted sequences, we exclude offers and acceptance decisions from surveyors, as these are not actual decisions made by negotiating agents. This point leads to the total number of observations for the rides setting differing in analysis where we examine offers made (such as Table 1 and Figure 1) vs. analysis where we examine offers accepted (such as Table 2 or Appendix Table A2), because, in acceptance analysis, some scripted bargaining acceptances must be dropped, and yet some scripted bargaining offers can be included.

In columns 3-5 of Appendix Table A2, we repeat our analysis of the likelihood that split offers are accepted, doing so separately for real bargaining data, the scripted bargaining sequences that begin with a driver offer, and the scripted bargaining sequences that begin with a surveyor offer. As highlighted in Section 5.1, these scripted bargaining offers are the most interesting for this analysis, as these give something closer to a causal estimate of the effect of split offer because surveyor's offers are assigned by the experiment designer rather than arising endogenously. ${ }^{35}$ In this subset of the data, shown in columns 4-5, we find positive point estimates, and a particularly large and marginally significant positive point estimate in those sequences that begin with a surveyor offer. When we examine histograms of concession weights separately for these three subsamples, we also find a large mass point at 0.5 and sparse data at other points, as in the main sample.

B. 5 Bargaining Over Housing

In this dataset, we observe a seller identifier (which is simply the address of the home), but we do not observe the buyer identifier. This means that when we observe multiple offers for the same house, these could come from the same buyer or different buyers. We are therefore required to make some assumptions to identify a distinct bargaining thread (i.e., a negotiation between a given seller and given buyer). For each observation, we can observe the agent commission type (call it AgentType), which is either a fixed amount (e.g., $\$ 5,000$) or a percentage (e.g., 2%). We assume if two observations have different AgentType, they must be different buyers. If two observations have the same AgentType, they are not necessarily the same buyer. For all offers in each house-AgentType pair, we sort them by their submitted timestamp.

In the main sample, we only keep those house-AgentType pairs where all offers always weakly increase over time. Among these pairs, if the last offer is accepted or no offer is accepted, we assume all these offers belong to the same buyer. If some middle offer is accepted, we assume all offers up to the accepted offer belong to the same buyer and all offers after the accepted offer belong to another buyer.

For pairs where not all offers weakly increase over time, we follow the rules below to identify distinct buyers:

[^21]- When an offer is higher than the previous offer and the previous offer is not accepted, then the two offers come from the same buyer.
- When an offer is higher than the previous offer and the previous offer is accepted, then the second offer is made by a new buyer.
- When an offer is lower than the previous offer, then the second offer is made by a new buyer.

In doing so, we assume that the seller only bargains with one buyer at the same time. We are less confident in this assumption, and thus in the main sample, we exclude these observations. When these observations are included, we find a similar mass point at 0.5 in the concession weights and a positive (but insignificant) point estimate of the effect of a split offer on the probability of acceptance. The latter result is shown in column 6 of Appendix Table A2.

B. 6 International Trade Tariff Bargaining

This dataset is publicly available on the journal website. We define one bargaining round as a combination of Proposer-Target-Stage-Date. A stage can be "request," "offer," "final offer," or "modification." An example of one bargaining round is the following: Australia makes requests to India on 10/16/1950. To create product-level concordances across negotiations, Bagwell et al. (2020) connect product-level descriptions to HS 1988 6-digit (HS6) codes. A product-level description can involve multiple tariff items. We refer to a combination of HS6 and tariff item as one product. If multiple observations exist for one product in one bargaining round, we use their average tariffs. A bargaining thread contains two counties negotiating over the tariffs for a certain product in a certain direction.

In the raw dataset, there are two types of tariffs: "Specific" means the request/offer is in dollars and "Ad Valorem" means the tariff is quoted as a fraction of prices. In most threads, only one type of tariff is used. In some rare cases, both types can exist. For each thread, if all observations have Ad Valorem tariff terms, we use this variable as the price variable. If not all observations involve Ad Valorem tariff terms, but all observations involve Specific tariff terms, we use this variable as the price variable. We drop threads with no consistent tariff types. We also drop observations with missing stage variables and with inconsistent country names.

Within each thread, we sort all observations by date. In a few cases, there are multiple observations on the same day, which come from modifications of offers/requests/final offers. We treat these modifications as having come after their corresponding proposals. For each thread, if there is a "final offer" or "modification of final offer" stage, we assume the price in this round is the final price. If there is no such stage, we assume this bargaining thread does not reach an agreement. For each round, if the price is equal to the final price, we assume this offer or request is accepted. Otherwise, it is rejected/countered. By construction, the price in the "final offer" or "modification of final offer" stage is accepted.

In all threads, 66.5% start with a request, 14.1% start with an offer, and the rest start a final offer. We drop threads that start with a final offer. We further restrict to threads with the following patterns: threads that start with a request (which includes items labeled "request," "request-offer," "request-final offer," and "request-offer-final offer") and threads that start with an offer (which includes items labeled "offer" and "offer-final offer"). These threads account for more than 80% of total threads.

For purposes of examining split-the-difference behavior, we consider two benchmarks as though they are default bargaining offers at the beginning of any given thread. These are a zero tariff, which can be seen as the initial request from any proposer, and the status quo tariff before the negotiations, which can be seen as the initial offer from the target. For threads that start with an offer and for the last round in threads with the pattern "request-offer-final offer," we replace $\gamma_{j, t}$ with $1-\gamma_{j, t}$, so that $\gamma_{j, t}$ still measures the extent of concession in two consecutive offers from the target. We exclude the last round in threads with the pattern "offer-final offer," as this implies three consecutive offers and we cannot define concession in this case.

In our main analysis, we pool together sequences that begin with a request and those that begin with an offer. When we examine these two subsets of the data separately, we find a similar mass point at 0.5 in the concession weights, and a similarly strong positive and significant effect of split offers on the acceptance probability. These latter results are shown in the last two columns of Appendix Table A2. The effect of a split offer is especially large for sequences that begin with an offer.

C Additional Placebo Concession Analysis

C. 1 Placebo Based on Secret Reserve Prices in Used Car Bargaining

In the used car bargaining data, we can observe the reserve price the seller reports to the auction house. This is a secret reserve price, in that it is not announced to the buyer. If the auction price is above this secret reserve price, the highest bidder is awarded the car. Otherwise, the seller and the buyer can bargain. The bargaining starts with the auction price from the buyer, $p_{j, 1}$, and then alternates between the seller and buyer.

Below are two placebo concession weights we construct that rely on sellers' secret reserve prices:

- In round 3 , the true concession of the buyer is $\gamma_{j, 3}=\frac{p_{j, 3}-p_{j, 1}}{p_{j, 2}-p_{j, 1}}$. The placebo concession $\gamma_{j, 3}^{p l}$ replaces the offer of the seller, $p_{j, 2}$, with the reserve price.
- In round 4 , the true concession of the seller is $\gamma_{j, 4}=\frac{p_{j, 4}-p_{j, 2}}{p_{j, 3}-p_{j, 2}}$. The placebo concession $\gamma_{j, 4}^{p l}$ replaces the offer of the seller, $p_{j, 2}$, with the reserve price.

In many cases, the placebo concession is out of the range $[0,1]$. Appendix Figure A1 plots the distribution of these placebo concession weights in rounds 3 and 4, where we limit to cases where the weight lies in $[0,1]$. In the right panel of Appendix Figure A1, we observe a spike at 0.5 , suggesting that some sellers do propose offers that split the difference between the buyer's most recent offer and the seller's secret reserve price. This tendency to splitting the difference is much weaker here, however, than in the histogram of the main sample shown in Figure 1. The spike at 0.5, for example, is similar to those at other levels of $\gamma_{j, 4}^{p l}$ (such as those around 0.7 or 0.8), suggesting that a stronger norm for splitting the difference between the two most recent offers than between an offer and a privately known quantity.

Figure A1: Distribution of Placebo Concession, Used Car Bargaining

Notes: Each panel shows a histogram of the placebo concession weights in the used-car bargaining data where the seller's round 2 offer is replaced with the seller's secret reserve price. The left panel uses the round 3 placebo concession and the right panel uses the round 4 placebo concession.

C. 2 Placebo Based on Private Reserve Estimate in Pre-trial Settlement Bargaining

In the pre-trial settlement data, we can observe the insurer's "reserve price," which is an estimate known only to the insurer of how much the insurer expects the case to cost the company. There are two types of bargaining sequences: those that start with a demand and those that start with an offer.

- If the sequence starts with a demand, in round 3 , the true concession of the plaintiff is $\gamma_{j, 3}=\frac{p_{j, 3}-p_{j, 1}}{p_{j, 2}-p_{j, 1}}$. The placebo concession replaces the offer of the insurer in round 2 , $p_{j, 2}$, with the reserve price.
- If the sequence starts with an offer, in round 3 , the true concession of the insurer is $\gamma_{j, 3}=\frac{p_{j, 3}-p_{j, 1}}{p_{j, 2}-p_{j, 1}}$. The placebo concession replaces the offer of the insurer in round 1 , $p_{j, 1}$, with the reserve price.
- If the sequence starts with a demand, in round 4 , the true concession of the insurer is $\gamma_{j, 4}=\frac{p_{j, 4}-p_{j, 2}}{p_{j, 3}-p_{j, 2}}$. The placebo concession replaces the offer of the insurer in round 2 , $p_{j, 2}$, with the reserve price.
- If the sequence starts with an offer, in round 4 , the true concession of the plaintiff is $\gamma_{j, 4}=\frac{p_{j, 4}-p_{j, 2}}{p_{j, 3}-p_{j, 2}}$. The placebo concession replaces the offer of the insurer in round 3 , $p_{j, 3}$, with the reserve price.

In many cases, the placebo concession is out of the range [0, 1]. Appendix Figure A2 plots the distribution of placebo concession in rounds 3 and 4 for sequences that start with a demand and start with an offer separately, limiting to those with concession weights in $[0,1]$. We do not observe strong support for agents favoring offers that split the difference between the privately known reserve and the most recent public offer.

Figure A2: Distribution of Placebo Concession, Pre-trial Settlement Bargaining

Placebo Concession of Plaintiff, $\gamma_{j, 3}^{p l}$,

Placebo Concession of Plaintiff, $\gamma_{j, 4}^{p l}$

Placebo Concession of Insurer, $\gamma_{j, 4}^{p l}$

Notes: Each panel shows a histogram of the placebo concession weights in the settlement bargaining where an insurer offer is replaced with the insurer's privately known reserve amount.

C. 3 Placebo Based on Secret Auto-Accept/Decline Prices in eBay Best Offer Bargaining

In the eBay data, we can observe a seller's auto-accept and auto-decline prices. Reporting these price thresholds is optional for a seller. When reported, these prices serve a similar role to proxy bids in an eBay auction. If a buyer makes an offer above the auto-accept price, the platform automatically accepts the offer on the buyer's behalf. If a buyer makes an offer
below the auto-decline price, the platform declines. These prices are known only to the seller.

In the eBay setting, a bargaining sequence starts with the seller's list price and alternates between the buyer and seller. The list price is $p_{j, 1}$, the initial offer from the buyer is $p_{j, 2}$, and the first offer from the seller is $p_{j, 3}$. In round 3 , the true concession of the seller is $\gamma_{j, 3}=\frac{p_{j, 3}-p_{j, 1}}{p_{j, 2}-p_{j, 1}}$. The placebo concession replaces the list price $p_{j, 1}$ with the auto-accept or auto-decline price. In many cases, the placebo concession is out of the range $[0,1]$. Appendix Figure A3 plots the distribution of placebo concession using auto-decline and auto-decline prices separately, limiting to those cases with concession weights in $[0,1]$. We observe some mass at 0.5 , but far less than in the main sample in Figure 1, suggesting again a stronger norm for splitting the difference between the two most recent offers than between an offer and a quantity known only to one party.

Figure A3: Distribution of Placebo Concession, eBay Best Offer Bargaining
Placebo Concession $\gamma_{j, 3}^{p l}$, Auto-Decline Price Placebo Concession $\gamma_{j, 3}^{p l}$, Auto-Accept Price

Notes: Each panel shows a histogram of the placebo concession weights in the eBay bargaining. In each case, the list price of the seller ($p_{j, 1}$) is replaced with either the auto-decline (left panel) or auto-accept (right panel) price of the seller.

Table A2: Probability of a Split Offer Being Accepted

	Pre-trial Settlement Bargaining		Auto Rickshaw Rides Bargaining			Housing	Trade Tariff Bargaining	
	Insurer First	Plaintiff First	Real	Driver	Surveyor	Full	Request First	Offer First
Split	$0.170^{* * *}$	$0.165^{* * *}$	-0.0485	0.0333	0.165^{*}	0.0983	$0.0224^{* * *}$	$0.341^{* * *}$
	(0.00602)	(0.00991)	(0.0458)	(0.0567)	(0.0944)	(0.114)	(0.00235)	(0.0218)
N	148173	55968	1224	1050	736	338	41473	5512
Order of $\gamma_{j, t}$	3	3	3	3	3	3	3	3
Round FE	Yes							
Accept rate	0.37	0.28	0.30	0.13	0.16	0.60	0.05	0.25
Split rate	0.04	0.04	0.31	0.13	0.09	0.07	0.17	0.17
R^{2}	0.128	0.183	0.264	0.108	0.0932	0.0163	0.349	0.0814

Notes: Table shows the estimated coefficient on the split indicator from the regression described by equation (3), as in Table 2, using different subsamples in several of the data settings. Columns 1 and 2 correspond to settlement bargaining sequences that begin with a plaintiff or insurer proposing, respectively. Columns $3-5$ correspond to the auto rickshaw rides data, with the real bargaining only in column 3, scripted bargaining beginning with a driver moving first in column 4 , and scripted bargaining with a surveyor moving first in column 5. Column 6 uses the housing data, without excluding less trustworthy observations, as described in Appendix B. 5 . Columns $7-8$ use the trade data, with sequences beginning with a request in column 7 and those beginning with an offer in column 8 . The accept rate is the mean of the dependent variable and the split rate is the mean of the split indicator. Standard errors are shown in parentheses. $*: p<0.10, * *: p<0.05$, and $* * *: p<0.01$

Table A3: Probability of a Split Offer Being Followed by Opponent Exit

	Auto Rickshaw Rides Bargaining			Trade Tariff Bargaining		
	Real	Driver	Surveyor		Request First	Offer First
Split	0.0271	-0.0240	-0.157^{*}		-0.00385	$-0.359^{* * *}$
	(0.0331)	(0.0652)	(0.0829)		(0.00408)	(0.0235)
N	1224	1050	736	41473	5512	
Order of $\gamma_{j, t}$	3	3	3	3	3	
Round FE	Yes	Yes	Yes	Yes	Yes	
Exit rate	0.14	0.68	0.47	0.88	0.70	
Split rate	0.31	0.13	0.09	0.17	0.17	
R^{2}	0.0471	0.0659	0.221	0.151	0.0610	

Notes: Table shows the estimated coefficient on the split indicator from the regression described by equation (4), as in Table 2, using different subsamples in several of the data settings. Columns $1-3$ correspond to the auto rickshaw rides data, with the real bargaining only in column 1, scripted bargaining beginning with a driver moving first in column 2, and scripted bargaining with a surveyor moving first in column 3 . Columns $4-5$ use the trade data, with sequences beginning with a request in column 4 and those beginning with an offer in column 5 . The exit rate is the mean of the dependent variable and the split rate is the mean of the split indicator. Standard errors are shown in parentheses. $*: p<0.10,{ }^{* *}: p<0.05$, and ${ }^{* * *}: p<0.01$

[^0]: *We thank Panle Jia Barwick, Kalyan Chatterjee, Peter Cramton, Jack Fanning, Ted O’Donoghue, Marek Pycia, Al Roth, Caio Waisman, and seminar and conference participants at LSU, UCLA, and IACM for helpful comments and suggestions. We thank an anonynous real estate brokerage, as well as Iñigo Hernandez-Arenaz and Nagore Iriberri, for providing data.
 ${ }^{\dagger}$ Keniston: Louisiana State University, Department of Economics and NBER; dkeniston@lsu.edu; Larsen: Stanford University, Department of Economics and NBER; bjlarsen@stanford.edu; Li: Harvard University, Department of Economics; shengwu_li@fas.harvard.edu; Prescott: University of Michigan Law School; jprescott@umich.edu; Silveira: UCLA Department of Economics; silveira@econ.ucla.edu; Yu: Stanford University, Department of Economics; chuanyu@stanford.edu

[^1]: ${ }^{1} 50-50$ splits are a common outcome in relatively simple experiments, such as those involving the dictator and ultimatum games, as well as in less structured bargaining studies allowing the subjects to freely negotiate over the division of a pie. For excellent reviews of this vast literature, see Roth (1995) and Camerer (2011).
 ${ }^{2}$ Indeed, in an alternating-offer game, the only way that an equal split between offers could correspond to an actual equal split of the surplus is if the seller's previous offer corresponds precisely to the buyer's value and vice versa. However, if agents have such precise knowledge of their opponents' values, we are in the classic complete-information game as in Rubinstein (1982), and in such a game the equilibrium cannot generate an outcome of two offers followed by a split-the-difference offer; the unique subgame perfect Nash equilibrium involves a single offer that is immediately accepted by the counterparty.

[^2]: ${ }^{3}$ Of course, agents might be able to hold yet more optimistic beliefs on the basis that a particular equilibrium is being played. Our result is about the inferences that proceed robustly from sequential rationality, rather than from particular equilibrium assumptions.
 ${ }^{4}$ The economics literature on social norms stresses the role of informal enforcement as a key component of social interactions. See, for example, Elster (1989) and Fehr and Gächter (2000). The possibility that splitting the difference in bargaining arises as a social norm is echoed by veteran business and hostage negotiator Chris Voss, who writes, "The traditional negotiating logic that's drilled into us from an early age, the kind that exalts compromise, says 'Let's just split the difference... Then everybody's happy", (Voss and Tahl, 2016, p.115).
 ${ }^{5}$ This finding bears a close resemblance to results from the experimental literature on ultimatum games showing that (i) respondents are more prone to accept equal divisions of the pie than divisions that are more favorable to the respondent (Bellemare et al., 2008); and (ii) respondents are discontinuously more likely to accept 50-50 offers (Lin et al., 2020).

[^3]: ${ }^{6}$ Several other studies have also examined this same eBay bargaining data, such as Green and Plunkett (2022), who analyze how well human agents perform relative to reinforcement learning bots coded to respond optimally to observed actions in the data, and Freyberger and Larsen (2021), who estimate a structural model bounding private valuation distributions and bargaining inefficiency.
 ${ }^{7}$ Many experiments in the lab involve alternating-offer bargaining, but they do not address the questions we study in this paper; see, for example, Binmore et al. (1985), Ochs and Roth (1989), and Binmore et al. (1989). These experiments have investigated issues such as time discounting and the relevance of outside offers in bargaining. Andreoni and Bernheim (2009) focus on bargaining with complete information and offer a model and experimental results demonstrating how an equal split of a known pie can arise from a preference to appear equitable (a concern for social image). Other related studies include Roth and Malouf (1979) and Roth (1985).

[^4]: ${ }^{8}$ Such behavior likely corresponds to misrecorded data or to cases where some feature of the bargaining environment changes prior to the current proposed offer, such as the arrival of additional information or a new outside option for an agent. Dropping such threads eliminates fewer than 2% of observations in most data settings, but as many as 24% in some data settings where the arrival of new information or misrecorded offers may be more prevalent. We discuss this in Appendix B.

[^5]: ${ }^{9}$ As highlighted at the beginning of Section 2, for every data setting, our analysis conditions on bargaining sequences that include at least three offers.
 ${ }^{10}$ Prescott et al. (2014) study a small subset of this information, but the data we use in this paperparticularly the bargaining threads-remains largely unexplored.

[^6]: ${ }^{11}$ Examining these two cases separately, the average accepted price is indeed between the average first and second offers.
 ${ }^{12}$ For an episode of this TV show, see https://www.cuatro.com/negocia-como-puedas/completos/ Negocia_como_puedas_online_2_1652205034.html.

[^7]: ${ }^{13}$ Some settings have bargaining threads exceeding ten rounds, and we truncate them to the first ten rounds in Table 1.
 ${ }^{14}$ For the eBay setting, Figure 1.G is not new to the literature, capturing the same result as Figure 8 of Backus et al. (2020), but pooled across rounds. Similarly, our Figure 6.D and column 6 of Table 2 capture the same information as Figure 9 and Table 8 of Backus et al. (2020). All other results in this study are new.
 ${ }^{15}$ Another common mass point in these histograms is at zero, representing cases where a player does not budge at all. In the housing dataset, a mass point at 1 is also common, representing that an agent fully concedes to the seller's list price.

[^8]: ${ }^{16}$ For example, one feature of this PBE is that split offers, if accepted, generically do not result in an equal split of the underlying surplus (either in ex-ante or ex-post terms); one player inevitably takes home more of the surplus than the other, and there is a shift in which player gets more expected surplus depending on which round the game ends at when it ends in agreement. To see this, suppose that the bargaining ends in agreement at round t, for $t \geq 3$, given the behavior specified in the proof of Proposition 1. The expected surplus of the offering player is $\frac{1}{2^{t-1}}\left(\frac{1}{6}+\frac{\alpha}{2}\right)$, and the expected surplus of the receiving player is $\frac{1}{2^{t-1}}\left(\frac{5}{12}-\alpha\right)$. For $\delta>0$, the receiving player has strictly more expected surplus, and the inequality is strict even in the limit as $\delta \rightarrow 1$.

[^9]: ${ }^{17}$ We call this narrow because it does not depend on i 's type.
 ${ }^{18}$ Rationality is a weaker condition than extensive-form rationalizability (Pearce, 1984). Rationality only requires that agents play sequential best responses to some belief system. But we could require more strategic sophistication, stipulating that each agent believes that his opponent is rational, and believes that his opponent believes that he is rational, and so on. Extensive-form rationalizability requires strong belief in rationality, meaning that, at every history, each agent attributes to her opponent the highest level of strategic sophistication consistent with what has already occurred. See Battigalli and Siniscalchi (2002) for details.
 ${ }^{19}$ Our restriction to monotone sequences simplifies the theory. Appendix B demonstrates that sequences violating a weak version of monotonicity are not common empirically.
 ${ }^{20}$ It is natural to ask whether the beliefs supporting σ_{B} are reasonable. With small modifications, our proof can be strengthened to show that there exists a common prior on values and costs, and a PBE of the bargaining game with that common prior, such that type b plays σ_{B} under the PBE.

[^10]: ${ }^{21}$ The idea of agents only making inferences based on rejections of previous offers, and not the levels of those offers, also arises in a number of previous theoretical analyses of incomplete-information bargaining such as Chatterjee and Samuelson (1988), Gul and Sonnenschein (1988), and Ausubel and Deneckere (1992). They examine equilibria in which the level of the offer made by a privately informed party is not informative to the counterparty; only the fact that the previous offer was rejected is informative.

[^11]: ${ }^{22}$ Note that, in a setting of complete information, our theory-that agents favor an equal division of the most optimistic surplus consistent with all agents having rational beliefs-corresponds to the standard notion of splitting a pie of known size.

[^12]: ${ }^{23}$ The results are not sensitive to this choice; we find similar results with second-, fourth-, or fifth-order polynomial approximations. We also find similar results defining "split" offers using other bandwidths, including 0.01 (i.e., $\gamma_{j, t} \in[0.49,0.51]$) and 0.05 (i.e., $\gamma_{j, t} \in[0.45,0.55]$).

[^13]: ${ }^{24}$ We cannot examine this question in the housing dataset as we only observe a single offer triple in each sequence in that setting.
 ${ }^{25}$ In our other data settings, we have no consistent means of tracking an agent across different bargaining sequences.

[^14]: ${ }^{26}$ For example, suppose every agent has the same propensity q to propose a split offer, but each agent only ever proposes one offer in the data. We would observe roughly a fraction of q players proposing one split offer and a fraction of $1-q$ players proposing no split offers, and the curve will be far off the 45 -degree line.

[^15]: ${ }^{27}$ Standard errors on the difference are constructed from 100 nonparametric bootstrap-sample estimates of the true and placebo rates, sampling at the thread level.

[^16]: ${ }^{28}$ Note that cases in which a buyer moves first do not offer a zero lower bound: suppose the buyer first offers $\$ 200$, and then it is the seller's turn. If the seller counters, she will clearly counter at a price above $\$ 200$, but there is no natural upper bound that the agent would assume about the buyer's value.

[^17]: ${ }^{29}$ Conversely, we do not necessarily expect fairness considerations to scale down with negotiation stakes. In fact, complete-information lab-in-the-field ultimatum game experiments involving large sums (from the subjects' perspective) mostly reproduce the typical results from the lab, suggesting that concerns about fairness persist when stakes are high (Slonim and Roth, 1998; Cameron, 1999).
 ${ }^{30}$ Specifically, suppose an agent offering at period t has a value of 0 and believes her opponent's value is uniformly distributed between the two most recent offers. The optimal take-it-or-leave-it offer for this agent is the halfway point, $p_{t}=0.5\left(p_{t-2}+p_{t-1}\right)$.

[^18]: ${ }^{31}$ Collapsing these two adjacent decisions into one means that the one-stage deviation principle licenses us to directly compare the payoff from making any counteroffer p_{t+1} to the payoff from accepting p_{t}.

[^19]: ${ }^{32} b \sim U[0,1]$ is implied by the usual requirement that the seller's actions cannot be informative about the buyer's type.
 ${ }^{33}$ This gap vs. no-gap language appears frequently in the incomplete-information bargaining literature. See, for example, Ausubel et al. (2002).

[^20]: ${ }^{34}$ We do not describe any additional details for the eBay dataset, as we use the same cleaning steps as Backus et al. (2020).

[^21]: ${ }^{35}$ Even though the offer sequence of the surveyor is assigned exogenously, the event that an offer is a "split" offer is not entirely exogenous, as this depends on the offer of the driver as well.

